
Appendix A

INTUITION FUNCTION CALLS

In this appendix, all of the Intuition functions are presented in alphabetical order. The
description of each function follows the format shown below:

NAME
The name of the function and a one-line description of what it does.

SYNOPSIS
The correct form of the function call.

A-l

FUNCTION SUMMARY

AddGadget
AllocRemember
AutoRequest

BeginRefresh
BuildSysRequest

ClearDMRequest
ClearMenuStrip
ClearPointer
CloseScreen
CloseWindow
CloseWorkBench
CurrentTime

Display Alert
DisplayBeep
DoubleClick
DrawBorder
Drawlmage

EndRefresh
EndRequest

FreeRemember
FreeSysRequest

GetDefPrefs
GetPrefs

InitRequester
IntuiTextLength
ItemAddress

MakeScreen
ModifylDCMP
ModifyProp
MoveScreen

Adds a gadget to the gadget list of the window.
Calls AllocMem() and creates a link node
Automatically builds and gets response from a requester

Sets up a window for optimized refreshing
Builds and displays a system requester

Clears the DMRequest of the window
Clears the menu strip from the window
Clears the pointer definition from a window
Closes an Intuition screen
Closes an Intuition window
Closes the Workbench screen
Gets the current time values

Creates a display of an alert message
"Beeps" the video display
Tests two time values for double-click timing
Draws the specified border into the RastPort
Draws the specified image into the RastPort

Ends the optimized refresh state of the window
Ends the request and resets the window

Frees memory allocated by calls to AllocRemember()
Frees up memory used by a call to BuildSysRequestQ

Gets a copy of the the Intuition default Preferences
Gets the current setting of the Intuition Preferences

Initializes a Requester structure
Returns the length (pixel width) of an IntuiText
Returns the address of the specified Menultem

Does an Intuition-integrated MakeVPort() of a custom screen
Modifies the state of the window's IDCMP
Modifies the current parameters of a proportional gadget
Attempts to move the screen by the delta amounts

A-3

MoveWindow Asks Intuition to move a window

OffGadget "^
OffMenu
OnGadget
OnMenu
OpenScreen
OpenWindow
OpenWorkBench

PrintlText

Re fresh Gad gets
RemakeDisplay
RemoveGadget
ReportMouse
Request
RethinkDisplay

ScreenToBack
ScreenToFront
SetDMRequest
SetMenuStrip
SetPointer
SetWindowTitles
ShowTitle
SizeWindow

ViewAddress
ViewPort Ad dress

WBenchToBack
WBenchToFront
WindowLimits
WindowToBack
WindowToFront

Disables the specified gadget
Disables the given menu or menu item
Enables the specified gadget
Enables the given menu or menu item
Opens an Intuition screen
Opens an Intuition window
Opens the Workbench screen

Prints the text according to the IntuiText argument

Refreshes (redraws) the gadget display
Remakes the entire Intuition display
Removes a gadget from a window or a screen
Tells Intuition whether or not to report mouse movement
Activates a requester
The grand manipulator of the entire Intuition display

Sends the specified screen to the back of the display
Brings the specified screen to the front of the display
Sets the DMRequest of the window
Attaches the menu strip to the window
Sets a window with its own pointer
Sets the window's titles for both window and screen
Sets the screen title bar display mode
Asks Intuition to size a window

Returns the address of the Intuition View structure
Returns the address of a window's ViewPort structure —

Sends the Workbench Screen in back of all screens
Brings the Workbench Screen in front of all screens
Sets the minimum and maximum limits of the window
Asks Intuition to send this window to the back
Asks Intuition to bring this window to the front

A-4

FUNCTION - _-
Everything the function doss. - - ~L - : T -

R E S U L T " ~ i ^ ~ - " -" " -' " " \ ' ••• '
Tk results, if an> returned by the function.

BUGS : " :' -•"
Al known bugs, limitations, and deficiencies.

SEE ALSO
References to related functions in this and other books, as well as references to the
teit of this book.

A-2

AddGadget AddGadget

NAME
AddGadget — Adds a gadget to the gadget list of the window or screen.

SYNOPSIS
AddGadget(Pointer, Gadget, Position);

AO A l DO

FUNCTION
Adds the specified gadget to the gadget list of the given window, linked in at the
position in the list specified by the Position argument (that is, if Position ==
0, the gadget will be inserted at the head of the list, and if Position ===== 1, the
gadget will be inserted after the first gadget and before the second). If the Posi-
tion you specify is greater than the number of gadgets in the list, your gadget
will be added to the end of the list. This procedure returns the position at which
your gadget was added.

Calling AddGadgetQ does not cause your gadget to be displayed. The benefit
of this is that you may add several gadgets without having the gadget list
redrawn every time. The drawback is that you are obliged to call
RefreshGadgets() to have your added gadgets displayed.

NOTE: A relatively safe way to add the gadget to the end of the list is to
specify a Position of -1 . That way, only the 65,536th (and multiples of it) will
be inserted at the wrong position. The return value of the procedure will tell you
where it was actually inserted.

NOTE: The system window and screen gadgets are initially added to the front
of the gadget list. The reason for this is: if you position your own gadgets in
some way that interferes with the graphical representation of the system gadgets,
the system's gadgets will be "hit" first by the user. If you then start adding
gadgets to the front of the list, you will disturb this plan, so beware. On the
other hand, if you do not violate the design rule of never overlapping your gadg-
ets, there is no problem.

INPUTS
Pointer = pointer to the window to get your gadget.
Gadget = pointer to the new gadget.
Position = integer position in the list for the new gadget (starting from zero as

the first position in the list).

RESULT
Returns the position where the gadget was actually added.

A-5

AddGadget AddGadget

BUGS
None.

SEE ALSO
RemoveG adget ().

A-6

AllocRemember AllocRemember

.NAME
i AllocRemember - Calls AllocMemQ and creates a link* node.

S Y N O P S I S
Al locRemember(RememberKey, Size, F lags) ;

I AO DO Dl

FU^TION
This routine calls the Exec AIlocMem() function for you; it also links the
parameters of the allocation into a master list, so that you can simply call the
Intuition routine FreeRememberQ at a later time to deallocate all allocated |
memory without being required to remember the details of the memory you have I
allocated. !

This routine has two primary uses:

o Say that you are doing a long series of allocations in a procedure (such as the
Intuition OpenWindowQ procedure). If any one of the allocations fails for
lack of memory, you need to abort the procedure. Abandoning ship correctly
involves freeing up any memory you may have already allocated. This pro-
cedure allows you to free up that memory easily, without being required to
keep track of how many allocations you have already done, what the sizes of
the allocations were, or where the memory was allocated.

o Also, in the more general case, you may do all of the allocations in your entire
program using this routine. Then, when your program is exiting, you can free
it all up at once with a simple call to FreeRememberQ.

You create the "anchor" for the allocation master list by creating a variable that
is a pointer to the Remember structure and initializing that pointer to NULL.
This is called the RememberKey. Whenever you call AllocRemember(), the
routine actually does two memory allocations, one for the memory you want and

** the other for a copy of a Remember structure. The Remember structure is
filled in with data describing your memory allocation, and it is linked into the
master list pointed to by your RememberKey. Then, to free up any memory
that has been allocated, all you have to do is call FreeRememberQ with your
RememberKey.

Please read the FreeRememberQ function description. As you will see, you can
choose to free just the link nodes and keep all the allocated memory for yourself,
or you can elect to free both the nodes and your memory buffers.

See the Amiga ROM Kernel Manual for a description of the AllocMemQ call
and the values you should use for the Size and Flags variables.

A-7

AllocRemember Allc

INPUTS
RememberKey = the address of a pointer to a Remembc; strut

the first call to AllocRememberQ, initialize this pointer t o |
instance:
struct Remember *RememberKey;
RememberKey = NULL;
AllocRemember(&RememberKey, BUFSIZE, MEMFJ IIP);
FreeRemember(&RememberKey, TRUE);

Size = the size in bytes of the memory allocation. Pleii refer
AllocMemQ function in the Amiga ROM Kernel Ma? -al for

Flags = the specifications for the memory allocation. Pie -i refers
AllocMemQ function in the Amiga ROM Kernel A/a; nal for

RESULT
If the memory allocation is successful, this routine returns he b]
your requested memory block. Also, the node to your block will
the list pointed to by your RememberKey variable. If tb allocat
routine returns NULL and the list pointed to by RememberKey,
undisturbed.

BUGS
None.

SEE ALSO
FreeRememberQ.
The Exec AllocMemQ function.

A-8

I
AutoRequest AutoRequest

NAME
AutoRequest — Automatically builds and gets response from a requester.

S Y N O P S I S
AutoRequest (Window, BodyText , Pos i t iveText , Negat iveText ,

AO A l A2 A3
Posit iveFlags , Negat iveFlags , Width , Height);

DO Dl D2 D3

FUNCTION
This procedure automatically builds a requester for you and then waits for a
response from the user or the system to satisfy your request. If the response is
positive, this procedure returns TRUE. If the response is negative, this pro-
cedure returns FALSE.

This procedure first preserves the state of the IDCMP values of the window
argument. Then it creates an IDCMPFlag specification by merging your
PositiveFlags, NegativeFlags, and the IDCMP class GADGETUP. You may
choose to specify no flags for either the PositiveFlags or NegativeFlags
arguments.

The IntuiText arguments and the Width and Height values are passed
directly to the BuildSysRequest() procedure, along with your window pointer
and the IDCMP flags. Please refer to BuildSysRequestQ for a description of
the IntuiText that you are expected to supply when calling this routine. It is
an important but long-winded description that need not be duplicated here.

If the BuildSysRequestQ procedure does not return a pointer to a window, it
will return TRUE or FALSE (not valid structure pointers) instead, and these
BOOL values will be returned immediately.

On the other hand, if a valid window pointer is returned, that window will have
had its IDCMP ports and flags initialized according to your specifications.
AutoRequest() then waits for an IDCMP message on the UserPort; this mes-
sage will satisfy one of three requirements:

o If the message is of a class that matches one of your PositiveFlags argu-
ments (if you have supplied any), this routine returns TRUE.

o If the message class matches one of your NegativeFlags arguments (if you
have supplied any), this routine returns FALSE.

o The only other possibility is that the IDCMP message is of class
GADGETUP, which means that one of the two gadgets, as specified by the
PositiveText and NegativeText arguments, was selected by the user. If
the TRUE gadget was selected, TRUE is returned. If the FALSE gadget was
selected, FALSE is returned.

A-9

AutoRequest AutoRequest

U -«:
' When the dust has settled, this routine calls FreeSysRequestQ, if necessary, to

clean up the requester and any other allocated memory.

INPUTS
Window = pointer to a Window structure.
Body Text = pointer to an IntuiText structure.
PositiveText = pointer to an IntuiText structure.
NegativeText = pointer to an IntuiText structure.
PositiveFlags = flags for the IDCMP.
NegativeFlags = flags for the IDCMP.
Width, Height = the sizes required for the rendering of the requester.

RESULT
The return value is either TRUE or FALSE. See the text above for a complete
description of the chain of events that might lead to either of these values being
returned.

BUGS
None.

SEE ALSO
BuildSysRequestQ.

A-10

BeginRefresh

NAME ** tt

BeginRefresh — Sets up a window for optimized refreshing.

SYNOPSIS >' §
BeginRefresh (Window) j

AO

FUNCTION
This routine sets up your window for optimized refreshing. It sets Intuition
internal states and then sets up the layer underlying your window for a call to
the layer library. There, the "clip rectangles" of the layer are reorganized in a
fashion that causes any drawing performed in your window (until you call
EndRefresh()) to occur only in the regions that need to be refreshed. The term
"clip rectangles" refers to the division of your window into visible and concealed
rectangles. For more information about clipping rectangles and the layer library,
refer to the Amiga ROM Kernel Manual.

For instance, if you have a SIMPLE_REFRESH window that is partially con-
cealed and the user brings it to the front, your program will receive a message
asking it to refresh its display. If your program calls BeginRefresh() before
doing any of the drawing, the layer that underlies your window will be arranged
such that the only drawing that will actually take place will be that which goes
to the newly revealed areas. This is very performance-efficient.

After your program has performed its refresh of the display, it should call
EndRefreshQ to reset the state of the layer and the window. Then the pro-
gram may proceed with drawing to the window as usual.

Your program learns that the window needs refreshing by receiving either a mes-
sage of class REFRESHWINDOW through the IDCMP or an input event of class
IECLASSJREFRESHWINDOW through the console device. Whenever the pro-
gram is told that the window needs refreshing, it should call BeginRefresh()
and EndRefreshQ to clear the refresh-needed state, even if no drawing will be
done.

INPUTS
Window = pointer to the Window structure that needs refreshing.

RESULT
None.

BUGS
None.

SEE ALSO
EndRefreshQ.

A-ll

BuildSysRequest BuildSysRequest

NAME
BuildSysRequest — Builds and displays a system requester.

S Y N O P S I S
BuildSysRequest(Window, BodyText , Pos i t iveText , Negat iveText ,

AO Al A2 A3
IDCMPFlags , Width , Height);

DO Dl D2

FUNCTION
This procedure builds a requester based on the supplied information. If all goes
well and the requester is constructed, this procedure returns a pointer to the win-
dow in which the requester appears. That window will have the IDCMP
UserPort and WindowPort initialized to reflect the flags found in the
IDCMPFlags argument. The program may then Wait() on those ports to
detect the user's response to your requester, which may include either selecting
one of the gadgets or causing some other event to be noticed by Intuition (such
as DISKINSERTED, for instance). After the requester is satisfied, your program
should call the FreeSysRequestQ procedure to remove the requester and free
up any allocated memory.

If it is not possible to construct the requester, this procedure will use the text
arguments to construct a text string for a call to the DisplayAlert() procedure
and then will return either TRUE or FALSE depending on whether
DisplayAlert() returned FALSE or TRUE, respectively.

If the Window argument you supply is equal to NULL, a new window will be
created for you in the Workbench screen. If you want the requester created by
this routine to be bound to a particular window, you should not supply a
Window argument of NULL.

The text arguments are used to construct the display. They are pointers to in-
stances of the IntuiText structure.

The BodyText argument should be used to describe the nature of the requester.
As usual with IntuiText data, you may link several lines of text together, and
the text may be placed in various locations in the requester. This IntuiText
pointer will be stored in the ReqText variable of the new requester.

The PositiveText argument describes the text that you want associated with
the user choice of "Yes," "TRUE," "retry," or "good." If the requester is suc-
cessfully opened, this text will be rendered in a gadget in the lower left of the re-
quester; this gadget will have the GadgetID field set to TRUE. If the requester
cannot be opened and the DisplayAlert() mechanism is used, this text will be
rendered in the lower left corner of the alert display with additional text specify-

A-12

I
BuildSysRequest BuildSysRequest

ing that the left mouse button will select this choice. This pointer can be set to
NULL, which specifies that there is no TRUE choice th&t can be made.

The NegativeText argument describes the text that you want associated with
the user choice of "No," "FALSE," "cancel," or "bad." If the requester is suc-
cessfully opened, this text will be rendered in a gadget in the lower right of the
requester; this gadget will have the GadgetID field set to FALSE. If the reques-

r * ter cannot be opened and the DisplayAlertQ mechanism is used, this text will
be rendered in the lower right corner of the alert display with additional text
specifying that the right mouse button will select this choice. This pointer can-
not be set to NULL. There must always be a way for the user to cancel this
requester.

The positive and negative gadgets created by this routine have the following
features:

o BOOLGADGET

f* o RELVERIFY

o REQGADGET

o TOGGLESELECT

When defining the text for your gadgets, you may find it convenient to use the
special definitions used by Intuition for the construction of the gadgets. These
definitions include AUTODRAWMODE, AUTOLEFTEDGE, AUTOTOPEDGE
and AUTOFRONTPEN. You can find these in your local intuition.h (or
intuition.i) file.

The Width and Height values describe the size of the requester. All of your
— BodyText must fit within the Width and Height of your requester. The gadg-

ets will be created to conform to your sizes.

IMPORTANT NOTE: For the preliminary release of this procedure, a new win-
dow is opened in the same screen as the one containing your window. However,
with a forthcoming update of Intuition this will change; the requester will be
opened in the window supplied as an argument to this routine, if possible. The
primary implication of this will be that the IDCMP flags and ports will be dis-
turbed by a call to this routine. To assure upward compatibility, it is your
responsibility to make sure that the ports and EDCMPFlags of the window
passed to the routine are protected before the call to this routine.

f\ INPUTS
Window = pointer to a Window structure.

A-13

BuildSysRequest BuildSysRequest

BodyText = pointer to an IntuiText structure.
PositiveText = pointer to an IntuiText structure.
NegativeText = pointer to an IntuiText structure.
IDCMPFlags = the IDCMP flags you want used for the initialization of the

IDCMP of the window containing this requester.
Width, Height = the size required to draw your requester.

RESULT
If the requester was successfully drawn in a window, the value returned by this
procedure is a pointer to the window in which the requester was drawn. If, how-
ever, the requester cannot be drawn in the window, this routine will have called
Display Alert () before returning and will pass back TRUE if the user pressed
the left mouse button and FALSE if the user pressed the right mouse button.

BUGS
This procedure currently opens a window and then opens the requester within
that window. Also, if DisplayAlertQ is called, the PositiveText and
NegativeText are not rendered in the lower corners of the alert.

SEE ALSO
FreeSy sRequest ().
DisplayAlertQ.
ModifyIDCMP().
The Executive's WaitQ instruction.
AutoRequestQ.

A-14

ClearDMRequest ClearDMRequest

NAME
ClearDMRequest - Clears the DMRequest of the window.

SYNOPSIS
ClearDMRequestfWindow);

AO

FUNCTION
Attempts to clear the DMRequester from the specified window. The
DMRequester is the special requester that you attach to the double-click of the
menu button; the user can then bring up that requester on demand. This rou-
tine will not clear the DMRequester if it is active (in use by the user). If you
want to change the DMRequester after having called SetDMRequestQ, the
correct way to start is by calling ClearDMRequest() until it returns a value of
TRUE; then you can call SetDMRequest() with the new DMRequester.

INPUTS
Window = pointer to the structure of a window from which the DMRequest is

to be cleared.

RESULT
If the DMRequest was not currently in use, this function zeroes out the
DMRequest pointer in the window and returns TRUE.

If the DMRequest was currently in use, this function does not change the pointer
and returns FALSE.

BUGS
None.

SEE ALSO
SetDMRequest().
Request ().

A-15

ClearMenuStrip ClearMenuStrip

NAME -" - -
ClearMenuStrip — Clears the menu strip from the window.

SYNOPSIS -
ClearMenuStrip (Window) j

AO

FUNCTION
Clears the menu strip from the window.

INPUTS
Window =s pointer to a Window structure.

RESULT
None.

BUGS
None.

SEE ALSO
SetMenuStripQ.

t

A-16

ClearPointer ClearPointer

NAME
ClearPointer - Clears the pointer definition from *a window.

SYNOPSIS
ClearPointer(Window);

AO

FUNCTION
Clears the window of its own definition of the Intuition pointer. After
ClearPointerQ is called, every time this window is active the default Intuition
pointer will be the pointer displayed to the user. If your window is active when
this routine is called, the change will take place immediately.

INPUTS
Window = pointer to the structure of the window to be cleared of its pointer

definition.

RESULT
None.

BUGS
None.

SEE ALSO
SetPointerQ.

A-17

CloseScreen CloseScreen

NAME
CloseScreen — Closes an Intuition screen.

SYNOPSIS
CloseScreen(Screen);

AO

FUNCTION
This function unlinks the screen, unlinks the VIewPort, and deallocates every-
thing. It does not care whether or not there are still any windows attached to
the screen and does not try to close any attached windows; in fact, it ignores
them altogether. If this is the last screen, this function attempts to reopen
Workbench.

INPUTS
Screen = pointer to the Screen structure to be cleared and deallocated.

RESULT
None.

BUGS
None.

SEE ALSO
OpenScreenQ.

A-18

CloseWindow Close Window

NAME
CloseWindow — Closes an Intuition window. «»

SYNOPSIS
CloseWindow(Window);

AO

FUNCTION
This function closes an Intuition window. It unlinks it from the system, unallo-
cates its memory, and, if its screen is a system one that would be empty without
the window, closes the system screen, too.

A grim, foreboding note: if you are ever rude enough to CloseWindowQ on a
window that has an IDCMP without first having Reply()'d to all of the mes-
sages to the IDCMP port, Intuition in turn will be so rude as to reclaim and deal-
locate its messages without waiting for your permission.

Another grim note: if you have added a menu strip to this window (via a call to
SetMenuStripO) you must be sure to remove that menu strip (via a call to
ClearMenuStrip()) before closing your window. CloseWindow() does not
check whether the menus of your window are currently being used when the win-
dow is closed. If this happens to be the case, as soon as the user releases the
menu button the system will crash with pyrotechnics that are usually quite
lovely.

INPUTS
Window = a pointer to a Window structure.

RESULT
None.

BUGS
None.

SEE ALSO
OpenWindow().
ClaseScreenQ.

A-19

Close Wo rkBench CloseWorkBench

NAME
CloseWorkBench — Closes the Workbench screen.

SYNOPSIS
BOOL CloseWorkBenchQ;

FUNCTION
This routine attempts to close the Workbench. If the Workbench is open, it
tests whether or not any applications have opened windows on the Workbench
and returns FALSE if so. Otherwise, it cleans up all special buffers, closes the
Workbench screen, makes the Workbench program mostly inactive (it will still
monitor disk activity), and returns TRUE.

If the Workbench screen isn't open when this routine is called, TRUE is returned
immediately.

INPUTS
None.

RESULT
TRUE if the Workbench screen is closed.
FALSE if anything went wrong and the Workbench screen is still out there.

BUGS
None.

SEE ALSO
None.

A-20

CurrentTime Current Time

NAME
CurrentTime — Gets the current time values. v

SYNOPSIS
ULONG Seconds, Micros;
CurrentTime(&Seconds, & Micros);

DO Dl

FUNCTION
This function puts copies of the current time into the supplied argument
pointers. This time value is not extremely accurate, nor is it of a very fine reso-
lution. The time will be updated no more than sixty times a second and will typ-
ically be updated far fewer times a second.

INPUTS
Seconds = pointer to a ULONG variable to receive the current seconds value.
Micros = pointer to a ULONG variable for the current microseconds value.

RESULT
Puts the time values into the memory locations specified by the arguments.

BUGS
None.

SEE ALSO
None.

A-21

Display Alert DisplayAlert

NAME
DisplayAlert — Creates a display of an alert message.

SYNOPSIS
DisplayAlert(AlertNumber, String, Height);

DO AO D l

FUNCTION
Creates an alert display with the specified message.

If the system can recover from this alert, it is a RECOVERY_ALERT. The rou-
tine waits until the user presses one of the mouse buttons, after which the
display is restored to its original state and a BOOL value is returned by this rou-
tine to specify whether or not the user pressed the left mouse button.

If the system cannot recover from this alert, it is a DEADEND_ALERT, and this
routine returns immediately upon creating the alert display. The return value is
FALSE.

The AlertNumber is a LONG value, related to the value sent to the AlertQ
routine. The only bits that are pertinent to this routine, however, are the
ALERTJTYPE bits. These bits must be set to RECOVERY_ALERT for alerts
from which the system may safely recover or DEADEND_ALERT for fatal alerts.
These states are described in the paragraph above. A third type of alert, the
DAISY_ALERT, is used only by the Executive.

The String argument points to an AlertMessage string. The AlertMessage string
is composed of one or more substrings, each of which contains the following com-
ponents:

o First, a 16-bit x coordinate and an 8-bit y coordinate, describing where on the
alert display you want this string to appear. The y coordinate describes the
offset to the baseline of the text.

o Then, the bytes of the string itself, which must be null-terminated (end with
a byte of zero).

o Lastly, the continuation byte, which specifies whether or not another sub-
string follows this one. If the continuation byte is non-zero, there is another
substring to be processed in this AlertMessage. If the continuation byte is
zero, this is the last substring in the message.

The last argument, Height, describes how many video lines tall you want the
alert display to be.

A-22

Display Alert Display Alert

INPUTS
AlertNumber = the number of this AlertMessage. <The only pertinent bits of

this number are the ALERTJTYPE bits. The rest of the number is ig-
nored by this routine.

String = pointer to the alert message string, as described above.
Height = minimum display lines required for your message.

RESULT
A BOOL value of TRUE or FALSE. If this is a DEADEND_ALERT, FALSE is
always the return value. If this is a RECOVERY_ALERT, the return value will
be TRUE if the user presses the left mouse button in response to your message
and FALSE if the user presses the right button.

BUGS
If the system is in more trouble than you think, the level of your alert may be-
come DEADEND_ALERT without you ever knowing about it.

SEE ALSO
None.

A-23

Display Beep Display Beep

NAMET
DisplayBeep — "Beeps" the video display.

SYNOPSIS
DisplayBeep(Screen);

AO

FUNCTION
"Beeps" the video display by flashing the background color of the specified
screen. If the Screen argument is NULL, every screen in the display will be
beeped. Flashing all screens is not a polite thing to do, so this should be reserved
for dire circumstances.

Such a routine is supported because the Amiga has no internal bell or speaker.
When the user needs to know of an event that is not serious enough to require
the use of a requester, the DisplayBeep() function should be called.

INPUTS
Screen = pointer to a Screen structure. If NULL, every Intuition screen will be

flashed.

RESULT
None.

BUGS
None.

SEE ALSO
None.

A-24

DoubleClick DoubleClick

"

NAME
DoubleClick — Tests two time values for double-click timing.

S Y N O P S I S
DoubleClick(StartSeconds, StartMicros , CurrentSeconds,

DO Dl D2
CurrentMicros)j

D3

FUNCTION
Compares the difference in the time values with the double-click timeout range
that the user (using the Preferences tool or some other source) has configured
into the system. If the difference between the specified time values is within the
current double-click time range, this function returns TRUE; otherwise, it re-
turns FALSE.

These time values can be found in InputEvents and IDCMP messages. The
time values are not perfect; however, they are precise enough for nearly all
applications.

INPUTS
StartSeconds, StartMicros = the timestamp value describing the start of the

double-click time period you are considering.
CurrentSeconds, CurrentMicros = the timestamp value describing the end

of the double-click time period you are considering.

RESULT
If the difference between the supplied timestamp values is within the double-click
time range in the current set of Preferences, this function returns TRUE; other-
wise, it returns FALSE.

BUGS
None.

SEE ALSO
CurrentTimeQ.

A-25

Draw Border DrawBorder

A

NAME
DrawBorder — Draws the specified border into the RastPort.

S Y N O P S I S
DrawBorder(RastPort , Border , LeftOffset, TopOffset);

AO A l DO Dl

FUNCTION
First, this function sets up the drawing mode and pens in the RastPort accord-
ing to the arguments of the Border structure. Then, it draws the vectors of the
Border argument into the RastPort, offset by the LeftOffset and TopOffset.
This routine does Intuition window clipping as appropriate—if you draw a line
outside of your window, your imagery will be clipped at the window's edge.

If the NextBorder field of the Border argument is non-zero, the next Border
is rendered as well (return to the top of this FUNCTION section for details).

INPUTS
RastPort = pointer to the RastPort to receive the border crossing.
Border = pointer to a Border structure.
LeftOffset = the offset that will be added to each vector's x coordinate.
TopOffset = the offset that will be added to each vector's y coordinate.

RESULT
None.

BUGS
None.

SEE ALSO
None.

A-26

Draw Image Drawlmage

NAME
Drawlmage -- Draws the specified Image into the RastPort.

SYNOPSIS
DrawImage(RastPort, Image, LeftOffset, TopOffset);

AO A l DO D l

FUNCTION
First, this function sets up the drawing mode and pens in the RastPort accord-
ing to the arguments of the Image structure. Then, it moves the image data of
the Image argument into the RastPort, offset by the LeftOffset and
TopOffset. This routine does Intuition window clipping as appropriate—if you
draw an image outside of your window, your imagery will be clipped at the
window's edge.

-If the Nextlmage field of the Image argument is non-zero, the next Image is
rendered as well (return to the top of this section for details).

INPUTS
RastPort = pointer to the RastPort to receive the border crossing.
Image = pointer to an Image structure.
LeftOffset = the offset that will be added to the Image's x coordinate.
TopOffset = the offset that will be added to the Image's y coordinate.

RESULT
None.

BUGS
None.

SEE ALSO
None.

A-27

EndRefresh EndRefresh

NAME
EndRefresh — Ends the optimized refresh state of the window.

S Y N O P S I S
EndRefreshfWindow, Complete);

AO DO

FUNCTION
This function gets you out of the special refresh state of your window. It is
called following a call to BeginRefresh(), which begins the special refresh state.
While your window is in the refresh state, the only drawing that will be wrought
in your window will be to those areas that were recently revealed and that need
to be refreshed.

After your program has done all the needed refreshing for this window, this rou-
tine is called to restore the window to its non-refreshing state. Then all render-
ing will go to the entire window as usual.

The Complete argument is a Boolean TRUE or FALSE value used to describe
whether or not the refreshing that has been done is all that needs to be done at
this time. Most often, this argument will be TRUE. However, if, for instance,
you have multiple tasks or multiple procedure calls that must run to completely
refresh the window, each can call its own Begin/EndRefreshQ pair with a
Complete argument of FALSE, and only the last calls with a Complete argu-
ment of TRUE.

INPUTS
Window = pointer to the Window currently in optimized-refresh mode.
Complete = Boolean TRUE or FALSE describing whether or not this window

is completely refreshed.

RESULT
None.

BUGS
None.

SEE ALSO
BeginRefreshQ.

A-28

EndRequest EndRequest

NAME
EndRequest — Ends the request and resets the window.

SYNOPSIS
EndRequest (Requester, Window) j

AO A l

FUNCTION
This function ends the request by erasing the requester and resetting the window.
Note that this does not necessarily clear all requesters from the window, only the
specified one. If the window labors under other requesters, they will remain in
the window.

INPUTS
Requester = pointer to the structure of the requester to be removed.
Window = pointer to the Window structure with which this requester is

associated.

RESULT
None. ;

B U G S !
None. I

SEE ALSO
None.

A-29

FreeRemember FreeRemember

i ii

NAME !

FreeRemember -- Frees the memory allocated by calls to AllocRememberQ.

S Y N O P S I S
FreeRemember(RememberKey, Really Forget) ;

AO DO

FUNCTION
This function frees up memory allocated by the AllocRemember() function. It
will free up just the Remember structures, which supply the link nodes that tie
your allocations together, or it will deallocate both the link nodes and your
memory buffers.

If you want to deallocate just the Remember structure link nodes, you should
set the ReallyForget argument to FALSE. However, if you want
FreeRememberQ to really forget about all the memory, including both the
Remember structure link nodes and the buffers you requested via earlier calls to
AllocRemember(), you should set the ReallyForget argument to TRUE. If
you're not sure whether or not you want to ReallyForget, refer to figure 11-1.

INPUTS
RememberKey = the address of a pointer to a Remember structure. This

pointer should either be NULL or be set to some value (possibly NULL)
! by a call to AllocRemember(). For example:

: struct Remember *RememberKey;
! RememberKey = NULL;
| AllocRememberf&RememberKey, BUFSIZE, MEMF_CHIP);
j FreeRemember(&RememberKey, TRUE);

ReallyForget = a BOOL FALSE or TRUE describing, respectively, whether
| you want to free up only the Remember nodes or whether you want this

procedure to really forget about all of the memory, including both the
nodes and the memory buffers pointed to by the nodes.

RESULT
None.

BUGS |
None.

SEE ALSO
AllocRememberQ.

A-30

FreeSysRequest FreeSysRequest

NAME !
FreeSysRequest - Frees up memory used by a call to BuildSysRequestQ.

SYNOPSIS I
FreeSysRequest(Window);

I AO

FUNCTION !
This routine frees up all memory allocated by a successful call to the
BuildSysRequestQ procedure. If BuildSysRequest() returned a pointer to a
Window structure, then your program can Wait() for the message port of that
window to detect an event that satisfies the requester. When you want to
remove the requester, you call this procedure. It ends the requester and deallo-
cates any memory used in the creation of the requester.

NOTE: If Build SysRequestQ did not return a pointer to a window, you should
not call FreeSysRequestQ.

INPUTS
Window = a copy of the window pointer returned by a successful call to the

BuildSysRequestQ procedure.

RESULT I
None.

BUGS |
None. I

SEE ALSO
BuildSysRequestQ.
The Executive's WaitQ instruction.
AutoRequest Q.

A-31

GetDefPrefs GetDefPrefs

NAME !

GetDefPrefs — Gets a copy of the Intuition default Preferences.

SYNOPSIS
GetDefPrefs(PrefBuffer, Size);

AO DO

FUNCTION
This function gets a copy of the Intuition default Preferences data. It writes the
data into the buffer you specify. The number of bytes you want copied is
specified by the Size argument.

The default Preferences are those that Intuition uses when it is first opened. If
no Preferences file is found, these are the preferences that are used. These would
also be the start-up Preferences in an environment that does not use AmigaDOS.

It is legal to take a partial copy of the Preferences structure. The more pertinent
Preferences variables have been grouped near the top of the structure to facilitate
the memory conservation that can be had by taking a copy of only some of the
Preferences structure.

INPUTS!
PrefBuffer = pointer to the memory buffer to receive your copy of the Intuition

Preferences.
= the number of bytes in your PrefBuffer—the number of bytes you

want copied from the system's internal Preference settings.

RESULT
Returns your Preferences pointer.

BUGS
No^e.

SEE ALSO
GetPrefsQ.

A-32

GetPrefa GetPrefs

NAME
GetPrefs — Gets the current setting of the Intuition Preferences.

SYNOPSIS I
GetPrefs(PrefBuffer, Size);

| AO DO

FUNCTION
This function gets a copy of the current Intuition Preferences data and writes the
data into the buffer you specify. The number of bytes you want copied is
specified by the Size argument.

It is legal to take a partial copy of the Preferences structure. The more pertinent
Preferences variables have been grouped near the top of the structure to facilitate
the memory conservation that can be had by taking a copy of only some of the
Preferences structure.

INPUTS
PrefBuffer = pointer to the memory buffer to receive your copy of the Intuition

Preferences.
Size = the number of bytes in your PrefBuffer—the number of bytes you

want copied from the system's internal Preference settings.

RESULT
Returns a copy of your Preferences pointer.

BUGS |
None.

SEE ALSO
GetDefPrefsQ.

M

§

A-33

InitRequester InitRequester

NAME!
InitRequester — Initializes a Requester structure.

SYNOPSIS
iiitRequester(Requester);

!
FUNCTION

AO

e original text for this function was:

This function initializes a requester for general use. After calling
InitRequesterQ, you need fill in only those requester values that _.
fit your needs. The other values are set to states that Intuition
regards as NULL.

Al| this routine actually does is fill the specified Requester structure with zeros.
Thjere is no requirement to call this routine before using a Requester structure.
Fo | the sake of backward compatibility, this function call remains, but its sole
effdct is, and is guaranteed to always be, a zero, a mystery, an enigma.

INPUTS
Requester = a pointer to a Requester structure.

RESULT
Norie.

BUGS
Noi

SEE ALS6
Non

A-34

IntuiTextLength IntuiTextLength

NAME
IntuiTextLength - Returns the length (pixel width) of an IntuiText.

SYNOPSIS
IntuiTtextLength(IText);

AO

FUNCTION
This rputine accepts a pointer to an instance of an IntuiText structure and
return^ the length (the pixel width) of the string that is represented by that
instance of the structure.

All of ^he usual IntuiText rules apply. Most notably, if the Font pointer of the
structure is set to NULL, you will get the pixel width of your text in terms of the
current default font.

INPUTS
IText = pointer to an instance of an IntuiText structure.

RESULT
Returns the pixel width of the text specified by the IntuiText data.

BUGS
None.

SEE ALSO
None

A-35

ItemAddress ItemAddress

*

NAME
ItemAddress — Returns the address of the specified Menultem.

SYNOPSES
ItemAddress(MenuStrip, MenuNumber) ;

AO DO

FUNCTION
Th^s routine feels through the specified MenuStrip and returns the address of
thejitem specified by the MenuNumber. Typically, you will use this routine to
get the address of a Menultem from a MenuNumber sent to you by Intuition
after the user has played with your menus.

This routine requires that the arguments be well defined. MenuNumber may
be equal to MENUNULL, in which case this routine returns NULL. If
MenuNumber does not equal MENUNULL, it is presumed to be a valid item
number selector for your MenuStrip, which includes a valid menu number and a
valid item number. If the item specified by the above two components has a
subitem, the MenuNumber may have a subitem component too.

Note that there must be both a menu number and an item number. Because a
subitem specifier is optional, the address returned by this routine may point to
either an item or a subitem.

INPUTS
MenuStrip = a pointer to the first menu in your menu strip.
MenuNumber = the value that contains the packed data that selects the menu

and item (and subitem).

RESULT
If MenuNumber —= MENUNULL, this routine returns NULL. Otherwise,

ii this routine returns the address of the Menultem specified by MenuNumber.

BUGS
Non

SEE ALSO
The "Menus" chapter in this book (chapter 6) for more information about
Menu Numbers.

A-36

MakeScreen MakeScreen

NAME
MakeScreen — Does an Intuition-integrated MakeVPort() of a custom screen.

SYNOPSIS
MakeScreen (Screen);

AO

FUNCTION
This procedure allows you to do a MakeVPort() for the ViewPort of your cus-
tom screen in an Intuition-integrated way. This allows you to do your own
screen njianipulations without worrying about interference with Intuition's usage
of the same ViewPort.

After calling this routine, you can call RethinkDisplay() to incorporate the new
ViewPort of your custom screen into the Intuition display.

INPUTS |
Screen = address of the Screen structure.

RESULT
None.

BUGS
None.

SEE ALSO
RethinkDisplayQ.
RemakeDisplay().
The graphics library's MakeVPortQ.

A-37

ModifylDCMP

NAME

Modify IDCMP

MddifylDCMP - Modifies the state of the window's IDCMP.

SYNOPSIS
MJ>difyEDCMP(Window, IDCMPFlags);

I AO DO

F U N C T I O N
TMs routine modifies the state of your window's IDCMP (Intuition Direct Com-
minication Message Port). The state is modified to reflect your desires as
described by the flag bits in the value IDCMPFlags. If the IDCMPFlags
argument equals NULL, you are asking for the ports to be closed; if they are
op^n, they will be closed. If you set any of the IDCMPFlags, this means that
yoi|i want the message ports to be open; if not currently open, the ports will be
opened.

A-38

The four actions that might be taken are described below:

o If there is currently no IDCMP in the given window and IDCMPFlags is
NULL, nothing happens.

o If there is currently no IDCMP in the given window and any of the
IDCMPFlags are selected (set), the IDCMP of the window is created,
including allocating and initializing the message ports and allocating a signal
Ibit for your port. See "Input and Output Methods" (chapter 8) for full
details.

If the IDCMP for the given window is opened and the IDCMPFlags argu-
ment is NULL, Intuition will close the ports, free the buffers, and free your
signal bit. The current task must be the same one that was active when this
signal bit was allocated.

If the IDCMP for the given window is opened and the IDCMPFlags argu-
jment is not NULL, this means that you want to change which events will be
broadcast to your program through the IDCMP.

NQTE: You can set up the Window->UserPort to any port of your own
before you call ModifyIDCMP(). If IDCMPFlags is non-null but your
Us^rPort is already initialized, Intuition will assume that it is a valid port with
taŝ c and signal data preset and will not disturb your set-up; Intuition will just
allocate the Intuition message port for your window. The converse is true as
well; if UserPort is NULL when you call here with IDCMPFlags ===== NULL,
only the Intuition port will be deallocated. This allows you to use a port that
yoU| already have allocated:

ModifylDCMp ModifylDCMP

o Open{Window() with IDCMPFlags equal to NULL (open no ports).

o Set tlje UserPort variable of your window to any valid port of your own
choosing.

o Call fyIodifyIDCMP() with IDCMPFlags set to what you want.

o Then,; to clean up later, set UserPort equal to NULL before calling
CloseWindow() (leave IDCMPFlags alone).

A grim, foreboding note: If you are ever rude enough to close an IDCMP
without first having ReplyQ'd to all of the messages sent to the IDCMP port,
Intuition!will in turn be so rude as to reclaim and deallocate its messages without
waiting for your permission.

INPUTS
Window = pointer to the Window structure containing the IDCMP ports.
IDCMPFlags = the flag bits describing the new desired state of the IDCMP.

RESULT
None.

BUGS
None.

SEE ALSO
OpenW|ndow().

'•e

A-39

! f

ft"

u

ModifyProp ModifyProp

NAME!
^/[odifyProp — Modifies the current parameters of a proportional gadget.

SYNOPSIS
^fodi fyProp(PropGadget , Po inter , Requester ,

AO A l A2
Flags , HorizPot , V e r t P o t , HorizBody, V e r t B o d y) ;

DO Dl D2 D3 D4

FUNCTION
f his routine modifies the parameters of the specified proportional gadget. The
gjadget's internal state is then recalculated and the imagery is redisplayed.

The Pointer argument can point to either a Window or a Screen structure.
Which one it actually points to is decided by examining the SCRGADGET flag
ojf the gadget. If the flag is set, Pointer points to a Screen structure; otherwise,
it} points to a Window structure.

I
ijhe Requester variable can point to a Requester structure. If the gadget has
t | e REQGADGET flag set, the gadget is in a requester and the Pointer must
necessarily point to a window. If this is not the gadget of a requester, the
Requester argument may be NULL.

INPUTS
PjpopGadget = pointer to the structure of a proportional gadget.
Pointer = pointer to the structure of the "owning" display element of the

gadget, which is a window or a screen.
Requester = pointer to a Requester structure (this may be NULL if this is not

| a requester gadget).
Flags = value to be stored in the Flags variable of the Proplnfo.
HorizPot = value to be stored in the HorizPot variable of the Proplnfo.
VertPot = value to be stored in the VertPot variable of the Proplnfo,
H<j>rizBody = value to be stored in the HorizBody variable of the Proplnfo.
V^rtBody = value to be stored in the VertBody variable of the Proplnfo.

RESULT!
Nojne.

BUGS
Nobe.

SEE AL$O
None.

A-40

?.-+•

MoveScreen MoveScreen

NAME
MovoScreen — Attempts to move the screen by the delta amounts.

SYNOPSI$
MoveScreen(Screen, DeltaX, DeltaY);

AO DO Dl

FUNCTION
Attempts to move the specified screen. This movement must follow one con-
straint (only for the current release of the software): horizontal movements are
ignored.

If th£ DeltaX and DeltaY variables you specify would move the screen in a way
that violates the above restriction, the screen will be moved as far as possible.

INPUTS
Screten = pointer to a Screen structure.
DeltaX = amount to move the screen on the x axis.
DeltaY = amount to move the screen on the y axis.

RESULT I
None|.

BUGS
None.

SEE
None.

A-41

jr.:

MoveWindow MoveWindow

NAMEJ
tyfoveWindow — Ask Intuition to move a window.

SYNOPSIS
fy[oveWindow(Window, DeltaX, DeltaY);

AO DO Dl

FUNCTION
This routine sends a request to Intuition asking to move the window the specified
dijstance. The delta arguments describe how far to move the window along the
respective axes. Note that the window will not be moved immediately; it will be
mpved the next time Intuition receives an input event, which happens currently
at a minimum rate of ten times per second and a maximum of sixty times a
second.

Tljis routine does no error-checking. If your delta values specify some far corner
of jthe universe, Intuition will attempt to move your window to the far corners of
the universe. Because of the distortions in the space-time continuum that can
result from this, as predicted by special relativity, the result is generally not a
pretty sight. _

INPUTS1

Window = pointer to the structure of the window to be moved.
DeltaX = signed value describing how far to move the window on the x axis.
DeltaY = signed value describing how far to move the window on the y axis.

RESULT |
None.

BUGS
Nonje.

i

SEE ALSb
SizefWindowQ.
WiiJdowToFront().
WiddowToBackQ-

i

OffGadget OffGadget

f\

NAME
OffGajdget — Disables the specified gadget.

i

S Y N O P S I S
OffGa.dget(Gadget, P o i n t e r , Reques te r) ;

AO Al A2

FUNCTION
This Command disables the specified gadget. When a gadget is disabled, these
thing^ happen:

o Its| imagery is displayed ghosted.

o Tl^e GADGDISABLED flag is set.

o Tljie gadget cannot be selected by the user.
i

_ The Pointer argument must point to a Window structure. The Requester
variable can point to a Requester structure. If the gadget has the
REQQADGET flag set, the gadget is in a requester and Pointer must neces-
sarilyl point to the window containing that requester. If this is not the gadget of
a requester, the Requester argument may be NULL.

NOTfe: It is never safe to tinker with the gadget list yourself. Do not supply
some gadget that Intuition has not already processed in the usual way.

NOTiE: If you have specified that this is a gadget of a requester, that requester
must be currently displayed.

INPUTS
Gadjget = pointer to the structure of the gadget that you want disabled.
Pointer = pointer to a Window structure.
Requester = pointer to a Requester structure (may be NULL if this is not a

requester gadget list).

RESULT
None.

BUGS
None

SEE ALSO
OnCadgetQ.

A-43

OffMenu OffMenu

NAME
Offl̂ lenu — Disables the given menu or menu item.

S Y N O P S I S
Ofl]Menu(Wmdow, MenuNumber) ;

AO DO

FUNCTION
This command disables a subitem, an item, or a whole menu. If the base of the
menu number matches the menu currently revealed, the menu strip is
redisplayed.

INPUTS h
Window = pointer to the Window structure.
MenuNumber = the menu piece to be enabled.

RESULT
Nonfc.

BUGS |
Nonp.

SEE ALSb
On^IenuQ,

A-44

OnGadget OnGadget

NAME !
OnGadget — Enables the specified gadget.

SYNOPSIS I
OnGadget(Gadget, Pointer, Requester);

AO A l A2

FUNCTION
This command enables the specified gadget. When a gadget is enabled, these
things happen:

o Its imagery is displayed normally (not ghosted).

o The GADGDISABLED flag is cleared.

o The gadget can thereafter be selected by the user.

The Pointer argument must point to a Window structure. The Requester
variable can point to a Requester structure. If the gadget has the
REQGADGET flag set, the gadget is in a requester and Pointer must point to
the Window containing the requester. If this is not the gadget of a requester,
the requester argument may be NULL. _

NOTE: It is never safe to tinker with the gadget list yourself. Do not supply
some gadget that Intuition has not already processed in the usual way.

NOTE:: If you have specified that this is a gadget of a requester, that requester
must be currently displayed.

INPUTS !
Gadget = pointer to the structure of the gadget that you want enabled.
Pointer = pointer to a Window structure.
Requester = pointer to a Requester structure (may be NULL if this is not a

requester gadget list).

RESULT I
None.!

BUGS

1 i

None.

SEE ALSO
OffG^dgetQ.

A-45

OnMenu OnMenu

5

NAME !

OnMenu -- Enables the given menu or menu item.

S Y N O P S I S
OpMenu(Window, MenuNumber);

! AO DO

FUNCTION
This command enables a subitem, an item, or a whole menu. If the base of the
menu number matches the menu currently revealed, the menu strip is
redisplayed.

INPUTS!
Window = pointer to the window.
MenuNumber = the menu piece to be enabled.

RESULT
N o p e . - •- - .. "; ""

BUGS
None.

SEE ALSO
OffMenuQ.

A-46

OpenScreen OpenScreen

f*S

NAME
OpenScreen — Opens an Intuition screen.

SYNOPSIS i
OpenScreen(NewScreen)j

AO

where the NewScreen structure is initialized with:

Left, Top, Width, Height, Depth, DetailPen, BlockPen, ViewModes,
Type, Font, DefaultTitle, Gadgets

FUNCTION]
This command opens an Intuition screen according to the specified parameters.
It does all the allocations, sets up the screen structure and all substructures com-
pletely, and links this screen's ViewPort into Intuition's View of the world.

Before you call OpenScreenQ, you must initialize an instance of a NewScreen
structure. NewScreen is a structure that contains all of the arguments needed
to open a screen. The NewScreen structure may be discarded immediately after
it is used to open the screen.

The TextAttr pointer that you supply as an argument will be used as the
default font for all Intuition-managed text that appears in the screen and its win-
dows. This includes, but is not limited to, the text on the title bars of both the
screen and windows.

The SHOWTITLE flag is set to TRUE by default when a screen is opened. This
causes the screen's title bar to be displayed when the screen first opens. To hide
the title bar, you must call the routine ShowTitleQ.

INPUTS
NewScreen = pointer to an instance of a NewScreen structure, which is ini-

tialized with the following information:

LeftEdge = initial x position of your screen (should be zero for now).
TopEdge = initial y position of the opening screen.
Width = the width for this screen's RastPort.
Height = the height for this screen's RastPort.
Depth = number of bit-planes.
DetailPen == pen number for details (such as gadgets or text in the title bar).
BlockPen = pen number for block fills (such as the title bar).
Type = screen type (for any screen not created by Intuition, this should be

equal to CUSTOMSCREEN). Types currently supported include only
CUSTOMSCREEN, which is your own screen. ^

I - : •'• : : • : - - : •

A-47

OpenScreen OpenScreen

You may also set the Type flag CUSTOMBITMAP and then supply your
own BitMap for Intuition to use, rather than having Intuition allocate
the display memory for you.

ViewModes = the appropriate flags for the data type ViewPort.Modes.
; These might include:

HIRES for this screen to be HIRES width.
INTERLACE for the display to switch to interlaced mode.
SPRITES for this screen to use sprites.

| DUALPF for dual-playfield mode.

Font = pointer to the default TextAttr structure for this screen and all win-
! dows that open in this screen.

DefaultTitle = pointer to a line of text that will be displayed along the screen's
title bar. The text will be null-terminated. If this argument is set to

\ NULL, no text will be produced. _ _
Gadgets = this should be set to NULL.
GustomBitMap = If you're not supplying a custom BitMap, this value is

ignored. However, if you have your own display memory that you want
; used for this screen, the CustomBitMap argument should point to the
| BitMap that describes your display memory. See the "Screens" chapter

and the Amiga ROM Kernel Manual for more information about
BitMaps.

RESULT
If all is well, the routine returns the pointer to your new screen.
If anything goes wrong, the routine returns NULL.

BUGS
None.

SEE ALSO
OpenWindowQ.
ShowTitleQ.

A-48

Open Window Open Window

•v~

NAME i
OpenWindow — Opens an Intuition window.

SYNOPSIS
O pen Window (NewWindow);

AO

where the NewWindow structure is initialized with:

Left, Top, Width, Height, DetailPen, BlockPen, Flags, IDCMPFlags,
Gadgets, CheckMark, Text, Type, Screen, BitMap, MinWidth,
MinHeight, Max Width, MaxHeight

FUNCTION
This command opens an Intuition window of the given height, width, and depth,
including the specified system gadgets as well as any of your own. It allocates
everything you need to get going.

Before you call OpenWindowQj you must initialize an instance of a
NewWindow structure, which contains all of the arguments needed to open a
window. The NewWindow structure may be discarded immediately after it is
used to open the window.

If Type == CUSTOMSCREEN, you must have opened your own screen
already via a call to OpenScreen(). Then Intuition uses your Screen argument
for the pertinent information needed to get your window going. On the other
hand, if Type == one of Intuition's standard screens, your Screen argument is
ignored. Instead, Intuition will check to see whether or not that screen already
exists; if it does not, it will be opened first before Intuition opens your window in
the standard screen. If the flag SUPER_BITMAP is set, the BitMap variable
must point to your own BitMap. The DetailPen and the BlockPen are used
for system drawing; for instance, the title bar is first filled using the BlockPen,
and then the gadgets and text are drawn using DetailPen. You can supply spe-
cial pens for your window, or you can use the screen's pens instead (by setting
either of these arguments to -1).

INPUTS
NewWindow = pointer to an instance of a NewWindow structure, which is

initialized with the following data:

LeftEdge = the initial x position for your window.
TopEdge = the initial y position for your window.
Width = the initial width of this window.

A-49

Open Window Open Window

f

i

Height = the initial height of this window.
DetailPen = pen number (or -1) for the drawing of window details (such as

gadgets or text in the title bar).
BlockPen = pen number (or -1) for window block fills (such as the title bar)
Flags == specifiers for your requirements of this window, as follows.

j o System gadgets you want attached to your window:

! o WINDOWDRAG allows this window to be dragged.

I o WINDOWDEPTH lets the user depth-arrange this window.

o WINDOWCLOSE attaches the standard close gadget.

j o WINDOWSIZING allows this window to be sized. If you ask for
the WINDOWSIZING gadget, you must specify one or both of the

I flags SIZEBRIGHT and SIZEBBOTTOM below; if you do not, the
I default is SIZEBRIGHT. See the following SIZEBRIGHT and
-I SIZEBBOTTOM items for extra information.

| o SIZEBRIGHT is a special system gadget flag that you set to
specify whether or not you want the right border adjusted to
account for the physical size of the sizing gadget. The sizing
gadget must, after all, take up room in either the right or the bot-
tom border (or both, if you like) of the window. Setting either this

j or the SIZEBBOTTOM flag selects which edge will take up the
slack. This will be particularly useful to applications that want to
use the extra space for other gadgets (such as a proportional
gadget and two Booleans done up to look like scroll bars) or, for
instance, applications that want every possible horizontal bit and
are willing to lose lines vertically.

NOTE: If you select WINDOWSIZING, you must select either
SIZEBRIGHT or SIZEBBOTTOM or both. If you select neither,
the default is SIZEBRIGHT.

o SIZEBBOTTOM is a special system gadget flag that you set to
specify whether or not you want the bottom border adjusted to
account for the physical size of the sizing gadget. For details, refer
to SIZEBRIGHT above. NOTE: If you select WINDOWSIZING,
you must select either SIZEBRIGHT or SIZEBBOTTOM or both.
If you select neither, the default is SIZEBRIGHT.

o GIMMEZEROZERO produces easy but expensive output.

o Type of window raster you want:

o SIMPLEJREFRESH

o SMARTJREFRESH

o SUPER_BITMAP

A-50

OpenWindow OpenWindow

"4T

BACKDROP specifies whether or not you want this window to be one
of Intuition's special backdrop windows. See BORDERLESS as well.

REPORTMOUSE specifies whether or not you want the program to
"listen" to mouse movement events whenever its window is active. If
you want to change whether or not your window is listening to the
mouse after you have opened your window, you can call
ReportMouse(). Whether or not your window is listening to the
mouse is also affected by gadgets, because they can cause the program
to get mouse movement reports. The reports (either InputEvents or
messages on the IDCMP) that you get will have the x,y coordinates of
the current mouse position, relative to the upper left corner of your
window (GIMMEZEROZERO notwithstanding). This flag can work
in conjunction with the IDCMP flag called MOUSEMOVE, which
allows your program to listen via the IDCMP.

BORDERLESS should be set if you want a window with no default
border padding. Your window may have border padding anyway,
depending on the gadgetry you have requested for the window, but
you will not get the standard border lines and spacing that come with
typical windows. This is a good way to take over the entire screen,
since you can have a window cover the entire width of the screen
using this flag. This will work particularly well in conjunction with
the BACKDROP flag (see above), because it allows you to open a win-
dow that fills the entire screen.

NOTE: This is not a flag that you want to set casually, since it may
cause visual confusion on the screen. The window borders are the
only dependable visual division between various windows and the
background screen. Taking away the border takes away that visual
cue, so make sure that your design does not need it before you
proceed.

ACTIVATE is the flag you set if you want this window to automati-
cally become the active window. The active window is the one that
receives input from the keyboard and mouse. It is usually a good idea
to have the window you open when your application first starts up be
an ACTIVATED one, but all others opened later should not be
ACTIVATED. (If the user is off doing something with another screen,
for instance, your new^ window will change where the input is going,
which would have the effect of yanking the input rug from under the
user.) Please use this flag thoughtfully and carefully.

RMBTRAP, when set, causes the right mouse button events to be
trapped and broadcast as events. Your program can receive these
events through either the IDCMP or the console.

A-51

Open Window . Open Window

IDCMPFlags = IDCMP is the acronym for Intuition Direct Communications
! Message Port. It is Intuition's sole acronym, given in honor of all hack-
I heads who love to mangle our brains with maniacal names; fashioned
| especially cryptic and unpronounceable to make them squirm with sar-
I donic delight. Here's to you, my chums. Meanwhile, I still opt (and
1 argue) for simplicity and elegance.

i If any of the IDCMP flags is selected, Intuition will create a pair of mes-
| sage ports and use them for direct communications with the task that is
I opening this window (as compared with broadcasting information via the
\ console device). See the "Input and Output Methods" chapter of this
I book (chapter 8) for complete details.

1 You request an IDCMP by setting any of these flags. Except for the spe-
I cial "verify" flags, every other flag you set tells Intuition that if a given
\ event occurs that your program wants to know about, Intuition should

broadcast the details of that event through the IDCMP rather than via
the console device. This allows a program to interface with Intuition
directly, rather than going through the console device.

! Remember, if you are going to open both an IDCMP and a console, it will
| be far better to get most of the event messages via the console. Reserve
| your usage of the IDCMP for special performance cases; that is, when you
! are not going to open a console for your window and yet you do want to
| learn about a certain set of events (for instance, CLOSEWINDOW);
; another example is SIZEVERIFY, which is a function that you get only

through the use of the IDCMP (because the console does not give you any
way to talk to Intuition directly).

On the other hand, if the IDCMPFlags argument is equal to zero, no
I IDCMP is created and the only way you can learn about any window
| event for this window is; via a console opened for this window. For
j instance, you have no way to SIZEVERIFY.

I If you want to change the state of the IDCMP after you have opened the
window (including opening or closing the IDCMP), you call the routine
ModifyIDCMP().
The flags you can set are explained below:

o REQVERIFY is a flag that, like SIZEVERIFY and MENUVERIFY
(see below), specifies that you want to make sure that your graphical
state is quiescent before something extraordinary happens, such as the
drawing of a rectangle of graphical data in your window. If you are
drawing in that window, you probably will wish to make sure that
you have ceased drawing before the user is allowed to bring up the
DMRequest you have set up. The same goes for when the system has
a requester for the user. Set this flag to ask for that verification step.

o REQCLEAR is the flag you sett to get notification when the last

A-52

Open Window OpenWindow

requester is cleared from your window and it is safe for you to start
output again (presuming that you are using REQVERIFY).

REQSET is a flag that you set to receive a broadcast when the first
requester is opened in your window. Compare this with REQCLEAR
above. This function is distinct from REQVERIFY. REQSET merely
tells your program that a requester has opened, whereas REQVERIFY
requires the program to respond before the requester is opened.

MENUVERIFY is the flag you set to have Intuition stop and wait for
your program to finish all graphical output to the window before
drawing the menus. Menus are currently drawn in the most memory*
efficient way, which involves interrupting output to all windows in the
screen before the menus are drawn. If you need to finish your graphi-
cal output before this happens, you can set this flag to make sure that
you do.

SIZEVERIFY is used when the program sends output to the window
that depends on a knowledge of the current size of the window. If the
user wants to resize the window, you may want to make sure that
any queued output completes before the sizing takes place (critical
text, for instance). To do so, set this flag. Then, when the user
wants to size, Intuition will send the program the SIZEVERIFY mes-
sage and Wait() until the program replies that it is all right to
proceed with the sizing.

NOTE: Saying that Intuition will Wait() until your program replies
is really saying that the user will wait until the program replies, which
suffers the great negative potential of user-unfriendliness. Remember
to use this flag sparingly, and, as always with any IDCMP message
your program receives, reply promptly! After the user has sized the
window, your program can find out about it by using NEWSIZE.

NEWSIZE is the flag that tells Intuition to send an IDCMP message
after the user has resized your window. At this point, you could
examine the size variables in your Window structure to discover the
new size of the window.

REFRESHWINDOW, when set, will cause a message to be sent when-
ever your window needs refreshing. This flag makes sense only with
SIMPLEJtEFRESH and SMARTJtEFRESH windows.

MOUSEBUTTONS will make sure your program receives reports
about mouse-button up/down events. NOTE: Only the events that
mean nothing to Intuition are reported. If the user clicks the select
button over a gadget, Intuition deals with it without sending any
message.

MOUSEMOVE works only if you set the REPORTMOUSE flag (see
above) or if one of your gadgets has the flag FOLLOWMOUSE set.

A-53

Open Window OpenWindow

1 i!

Then all mouse movements will be reported through the IDCMP.

o GADGETDOWN specifies that when the user "selects" a gadget you
have created with the GADGIMMEDIATE flag set, the fact will be
broadcast through the IDCMP.

o GADGETUP specifies that when the user "releases" a gadget that you
have created with the RELVERIFY flag set, the fact will be broadcast

i through the IDCMP.

i o MENUPICK specifies that MenuNumber data be sent to your
: program.

o CLOSEWINDOW specifies that the CLOSEWINDOW event be broad-
casted through the IDCMP rather than the console device.

o RAWKEY specifies that all RAWKEY events be transmitted via the
IDCMP. Note that these are absolutely raw keycodes, which you will

_j have to massage before using. Setting this and the MOUSE flags
! effectively eliminates the need to open a console device to get input
| from the keyboard and mouse. Of course, in exchange you lose all of

the console features, most notably the "cooking" of input data and
the systematic output of text to your window.

o VANILLAKEY is the raw keycode RAWKEY event translated into
the current default character keymap of the console device. In the
USA, the default keymap is ASCII characters. When you set this flag,
you will get IntuiMessages where the Code field has a character
representing the key struck on the keyboard.

o INTUITICKS gives you simple timer events from Intuition when your
window is the active one; it may help you avoid opening and manag-
ing the timer device. With this flag set, you will get only one queued-
up INTUITICKS message at a time. If Intuition notices that you've
been sent an INTUITICKS message and haven't replied to it, another
message will not be sent.

Intuition receives timer events ten times a second (approximately).

o Set ACTIVEWINDOW and INACTIVEWINDOW to discover when
your window becomes activated or inactivated.

Gadgets = a pointer to the first of a linked list of your own gadgets that you
want attached to this window. Can be NULL if you have no gadgets of
your own.

CheckMark = a pointer to an instance of the Image structure that contains
the imagery you want used when any of your Menultems is to be check-
marked. If you do not want to supply your own imagery and prefer to
use Intuitipn's own checkmark, set this argument to NULL.

A-54

OpenWindow Open Window

t
Text = a null-terminated line of text that will appear on the title bar of your

window (may be NULL if you want no text).
Type = the screen type for this window. If this equals CUSTOMSCREEN, you

must have already opened a custom screen (see text above). Types avail-
able include:

o WBENCHSCREEN
o CUSTOMSCREEN

Screen = if your type is one of Intuition's standard screens, this argument is
ignored. However, if type ===== CUSTOMSCREEN, this must point to
the structure of your own screen.

BitMap == if you have specified SUPERJ3ITMAP as the type of raster you
want for this window, this value points to a instance of the BitMap
structure. However, if the raster type is not SUPERJBITMAP, this

— pointer is ignored.
MinWidth, MinHeight, MaxWidth, MaxHeight = the size limits for this

window. These must be reasonable values, which is to say that the
minimums cannot be greater than the current size, nor can the maximums

-be smaller than the current size. If they are, they are ignored. Any one
of these can be initialized to zero, which means that that limit will be set
to the current dimension of that axis. The limits can be changed after
the window is opened by calling the WindowLimitsQ routine. If you
have not requested the WINDOWSIZING option, these variables are
ignored and you do not have to initialize them.

RESULT
If all is well, this command returns a pointer to the structure of your new win-
dow. If anything goes wrong, it returns NULL.

BUGS
ACTIVATE is currently advisory only. The user is able to do things that will
prevent your window from becoming the active one when it opens.

SEE ALSO
OpenScreenQ.
ModifyIDCMP().
SetWindowTitles().
WindowLimitsQ.

A-55

OpenWorkBench OpenWorkBench

NAME
OpenWorkBench — Opens the Workbench screen.

SYNOPSIS
BOOL OpenWorkBench();

FUNCTION
This routine attempts to reopen the Workbench. If the Workbench screen reo-
pens successfully, this routine returns TRUE; if something goes wrong, it returns
FALSE.

Even though this routine does return a BOOL value, you can ignore the return
value if you want.

INPUTS
None. ~"

RESULT
TRUE if the Workbench screen opened successfully or was already opened.
FALSE if anything went wrong and the Workbench screen is not open.

BUGS
None.

SEE ALSO
None.

A-56

PrintlText PrintlText

NAME
PrintlText — Prints the text according to the IntuiText argument.

SYNOPSIS
PrintIText(RastPort, IText, LeftEdge, TopEdge);

AO Al DO Dl

FUNCTION
This routine prints the IntuiText into the specified RastPort. It sets up the
RastPort as specified by the IntuiText values, then prints the text into the
RastPort at the IntuiText x,y coordinates offset by the left/top arguments.

This routine does Intuition window-clipping as appropriate. If you print text
outside of your window, your characters will be clipped at the window's edge.

If the NextText field of the IntuiText argument is non-zero, the next
IntuiText is drawn as well (return to the top of this FUNCTION section for
details).

INPUTS
RastPort = pointer to the RastPort destination of the text.
IText = pointer to an IntuiText structure.
LeftEdge = left offset of the IntuiText into the RastPort.
TopEdge = top offset of the IntuiText into the RastPort.

RESULT
None.

BUGS
None.

SEE ALSO - _ 7...
None.

A-57

Refresh Gadgets RefreshGadgets

NAME
RefreshGadgets - Refreshes (redraws) the gadget display.

S Y N O P S I S
RefreshGadgets(Gadgets , Pointer , Requester);

AO Al A2

FUNCTION
This routine refreshes (redraws) all of the gadgets in the gadget list, starting
from the specified gadget.

The Pointer argument points to a Window structure.

The Requester variable can point to a Requester structure. If the first gadget
in the list has the REQGADGET flag set, the gadget list refers to gadgets in a
requester and Pointer must necessarily point to a window. If these are not the
gadgets of a requester, the Requester argument may be NULL.

There are two main reasons why you might want to use this routine. First, you
have modified the imagery of the gadgets in your display and you want the new
imagery to be displayed. Second, if you think that some graphic operation you
just performed trashed the gadgetry of your display, this routine will refresh the
imagery.

The Gadgets argument can be a copy of the FirstGadget variable in either the
Screen or Window structure that you want refreshed; the effect of this will be
that all gadgets will be redrawn. However, you can selectively refresh just some
of the gadgets by starting the refresh part way into the list—for instance,
redrawing your window non-GIMMEZEROZERO gadgets only, which you have
conveniently grouped at the end of your gadget list.

NOTE: It is never safe to tinker with the gadget list yourself. Do not supply
some gadget list that Intuition has not already processed in the usual way.

NOTE: If you have specified that this is the gadget list of a requester, that
requester must be currently displayed.

INPUTS
Gadgets = pointer to the first structure in the list of gadgets wanting

refreshment.
Pointer — pointer to a Window structure.
Requester = pointer to a Requester structure (may be NULL if this is not a

requester gadget list).

A-58

RefreshGadgets RefreshGadgets

RESULT
None.

BUGS
None.

SFE ALSO
None.

A-59

RemakeDisplay RemakeD isplay

NAME
RemakeDisplay — Remakes the entire Intuition display.

SYNOPSIS
RemakeD isplay ();

FUNCTION

This is the big one. This procedure remakes the entire Intuition display. It calls
MakeScreen() for every screen in the system and then it calls
RethinkDisplay(), which rethinks the relationships of the screens to one
another and then rethinks the display Copper lists.

WARNING: This routine can take several milliseconds to run, so do not use it
lightly. RethinkDisplayO (called by this routine) does a Forbid() on entry
and a PermitQ on exit, which can seriously degrade the performance of the mul-
titasking Executive.

INPUTS
None. -

RESULT
None.

BUGS
None.

SEE ALSO
RethinkDisplayQ.

A-60

RemoveGadget RemoveGadget

NAME
RemoveGadget — Removes a gadget from a window.

S Y N O P S I S
USHORT R e m o v e G a d g e t (P o i n t e r , Gadget) ;

AO A l

FUNCTION
This routine removes the given gadget from the gadget list of the specified win-
dow. It returns the ordinal position of the removed gadget. If the gadget pointer
points to a gadget that is not in the appropriate list, -1 is returned. If there are
no gadgets in the list, -1 is returned. If you remove the 65,535th gadget from the
list, -1 is returned.

NOTE: The gadget's imagery is not erased by this routine. _

INPUTS
Pointer = pointer to the window from which the gadget is to be removed.
Gadget = pointer to the gadget to be removed. The gadget itself describes

whether this gadget should be removed from the window.

RESULT
Returns the ordinal position of the removed gadget. If the gadget was not found
in the appropriate list or if there are no gadgets in the list, -1 is returned.

BUGS
None.

SEE ALSO
AddGadgetQ.

A-61

\ I

ReportMouse .. ReportMouse

NAME
ReportMouse — Tells Intuition whether or not to report mouse movement.

SYNOPSIS
ReportMousefWindow, Boolean);

AO DO

F U N C T I O N
This routine tells Intuition whether or not to broadcast mouse movement events
to this window when it is active. The Boolean value specifies whether to start or
stop broadcasting position information of mouse-movement. If the window is
active, mouse-movement reports start coming immediately after this command.
This routine will change the current state of the FOLLOWMOUSE function of a
currently-selected gadget, too. Note that calling ReportMouse() when a gadget
is selected will only temporarily change whether or not mouse movements are
reported while the gadget is selected; the next time the gadget is selected, its
FOLLOWMOUSE flag is examined anew. Note also that calling
ReportMouseQ when no gadget is currently selected will change the state of
the window's REPORTMOUSE flag but will have no effect on any gadget that
may be subsequently selected.

The ReportMouseQ function is first performed when OpenWindowQ is first
called. If the flag REPORTMOUSE is included among the options, all mouse-
movement events are reported to the opening task and will continue to be
reported until ReportMouseQ is called with a Boolean value of FALSE. If
REPORTMOUSE is not set, no mouse-movement reports will be broadcast until
ReportMouseQ is called with a Boolean value of TRUE.

INPUTS
Window = pointer to a Window structure associated with this request.
Boolean = TRUE or FALSE value specifying whether to turn this function on

or off.

RESULT
None.

BUGS
None.

SEE ALSO
None.

A-62

Request Request

NAME
Request — Activates a requester.

SYNOPSIS
Request(Requester, Window);

AO A l

FUNCTION
This routine links in and displays a requester in the specified window. This rou-
tine ignores the window's REQVERIFY flag.

INPUTS
Requester = pointer to the structure of the requester to be displayed.
Window = pointer to the structure of the window into which this requester

goes.

RESULT
If the requester is successfully opened, TRUE is returned. If the requester could
not be opened, FALSE is returned.

BUGS
None.

SEE ALSO
None.

Ret hinkD isplay RethinkDisplay

NAME
RethinkDisplay — The grand manipulator of the entire Intuition display.

SYNOPSIS
Ret hin kD isp lay ();

FUNCTION
This function performs the Intuition global display reconstruction. This includes
massaging internal-state data, rethinking all of the ViewPorts and their rela-
tionship to one another, and, finally, reconstructing the entire display based on
the results of all this rethinking.

The reconstruction of the display includes calls to the graphics library to perform
MrgCopQ and LoadViewQ for all of Intuition's screens.

You may perform a MakeScreenQ on your custom screen before calling this
routine. The results will be incorporated in the new display.

WARNING: This routine can take several milliseconds to run, so do not use it
lightly. RethinkDisplay() does a ForbidQ on entry and a Permit() on exit,
which can seriously degrade the performance of the multitasking Executive.

INPUTS
None. -

RESULT
None.

BUGS
None.

SEE ALSO
MakeScreen().
RemakeDisplay().
The graphics library's MrgCopQ and LoadViewQ.
Exec's Forbid() and PermitQ.

A-64

ScreenToBack
ScreenToBack

NAME
ScreenToBack — Sends the specified screen to the back of the display.

SYNOPSIS
ScreenToBack(Screen);

AO

FUNCTION
This routine sends the specified screen to the back of the display.

INPUTS
Screen = pointer to a Screen structure.

RESULT
None.

BUGS
N o n e . " " . "" '.:.:.. — ~ .

SEE ALSO
ScreenToFrontQ.

A-65

ScreenToFront ScreenToFront

NAME
ScreenToFront — Brings the specified screen to the front of the display.

SYNOPSIS
ScreenToFront(Screen);

AO

FUNCTION
This routine brings the specified screen to the front of the display.

INPUTS
Screen = a pointer to a Screen structure.

RESULT
None.

BUGS
None.

SEE ALSO
ScreenToBackQ.

A-66

SetDMRequest SetDMRequest

NAME
SetDMRequest - Sets the DMRequest of the window.

S Y N O P S I S
SetDMRequest (Window, DMRequester);

AO A l

FUNCTION
This routine attempts to set the DMRequester in the specified window. The
DMRequester is the special requester that you attach to the double-click of the
menu button, allowing the user to bring up this requester on demand. This rou-
tine will not set the DMRequester if it is already set and is currently active (in
use by the user). To change the DMRequester after having called
SetDMRequestQ, you start by calling ClearDMRequest() until it returns a
value of TRUE. Then you can call SetDMRequestQ with the new
DMRequester. — — — — —

INPUTS
Window = pointer to the structure of the window into which the DMRequest is

to be set.
DMRequester = a pointer to a Requester structure.

RESULT
If the current DMRequest was not in use, the DMRequester pointer is set in the
window and this routine returns TRUE.

If the DMRequest was currently in use, this routine does not change the pointer
and returns FALSE.

BUGS
None.

SEE ALSO
ClearDMRequestQ.
Request Q.

— • !

A-67
•t

SetMenuStrip SetMenuStrip

NAME
SetMenuStrip — Attaches the menu strip to the window.

S Y N O P S I S
SetMenuStr ip(Window, Menu);

AO A l

FUNCTION
This routine attaches the menu strip to the window. If the user presses the
menu button after this routine is called, this specified menu strip will be
displayed and accessible.

NOTE: You should always design your menu strip changes to be two-way opera-
tions; every menu strip you add to your window should be cleared sometime.
Even in the simplest case, when you will have just one menu strip for the lifetime
of your window, you should always clear the menu strip before closing the win-
dow. If you already have a menu strip attached to this window, the correct pro-
cedure for changing to a new menu strip involves calling ClearMenuStripQ to
clear the old menu strip first. The sequence of events should be:

1. OpenWindowQ.

2. Zero or more iterations of:

o SetMenuStrip().

o ClearMenuStripQ.

3. CloseWindow().

INPUTS
"Window = pointer to a Window structure.
Menu = pointer to the first Menu structure in the menu strip.

RESULT
None.

BUGS
None.

SEE ALSO
ClearMenu Strip ().

A-68

SetPointer SetPointer

NAME
SetPointer — Sets a window with its own pointer.

S Y N O P S I S
SetPointer(Window, Pointer, Height, Width , XOffset, YOffset);

AO A l DO D l D2 D3

FUNCTION
This routine sets up the window with the sprite definition for the pointer. Then,
whenever the window is active, the pointer image will change to the sprite's ver-
sion of the pointer. If the window is active when this routine is called, the
change takes place immediately.

The XOffset and YOffset arguments are used to offset the top left corner of the
hardware sprite imagery from what Intuition regards as the current position of
the pointer. Another way of describing it is as the offset from the "hot spot" of
the pointer to the top left corner of the sprite. For instance, if you specify offsets
of zero, zero, then the top-left corner of your sprite image will be placed at the
pointer position. On the other hand, if you specify an XOffset of -7 (remember,
sprites are 16 pixels wide), your sprite will be centered over the pointer position.
If you specify an XOffset of -15, the right edge of the sprite will be over the
pointer position.

INPUTS
Window = pointer to the structure of the window to receive this pointer

definition.
Pointer = pointer to the data definition of a sprite.
Height = the height of the pointer.
Width = the width of the sprite (must be less than or equal to 16).
XOffset — the offset for your sprite from the pointer position.
YOffset = the offset for your sprite from the pointer position.

RESULT
None.

BUGS
None.

SEE ALSO
ClearPointerQ.

A-69

SetWindowTitles SetWindowTitles

NAME
SetWindowTitles
screen.

Sets the window's titles for both the window and the

SYNOPSIS
SetWindowTitles(Window, WindowTitle, ScreenTitle);

AO A l A2

FUNCTION
This routine allows you to set the text that appears in the window and/or screen
title bars. The window title appears at all times in the window title bar. The
window's screen title appears at the screen title bar whenever this window is
active.

When this routine is called, your window title will be changed immediately. If
your window is active when this routine is called, the screen title will be changed
immediately.

You can specify a value of -1 (negative one) for either of the title pointers. This
designates that you want Intuition to leave the current setting of that particular
title alone, modifying only the other one. Of course, you could set both to -1 .

Furthermore, you can set a value of 0 for either of the title pointers. Doing so
specifies that you want no title to appear (the title bar will be blank).

INPUTS
Window = pointer to your Window structure.
WindowTitle = pointer to a null-terminated text string; this pointer can also

be set to either -1 (negative one) or 0 (zero).
ScreenTitle = pointer to a null-terminated text string; this pointer can also be

set to either -1 (negative one) or 0 (zero).

RESULT
None.

BUGS
None.

SEE ALSO
OpenWindow()-
ShowTitleQ-

A-70

ShowTitle ShowTitle

NAME
ShowTitle — Sets the screen title bar display mode.

SYNOPSIS
ShowTitle(Screen, Showlt);

AO DO

F U N C T I O N
This routine sets the SHOWTITLE flag of the specified screen and then coordi-
nates the redisplay of the screen and its windows.

The screen title bar can appear either in front of or behind Backdrop windows.
Non-Backdrop windows always appear in front of the screen title bar. You
specify whether you want the screen title bar to be in front of or behind the
screen's Backdrop windows by calling this routine.

The Showlt argument should be set to either TRUE or FALSE. If TRUE, the
screen's title bar will be shown in front of Backdrop windows. If FALSE, the
title bar will be located behind all windows. When a screen is first opened, the

- default setting of the SHOWTITLE flag is TRUE.

INPUTS
Screen = pointer to a Screen structure.
Showlt = Boolean TRUE or FALSE describing whether to show or hide the

screen title bar.

RESULT
None.

BUGS
None.

SEE ALSO
SetWindowTitlesQ.

A-71

SizeWindow SizeWindow

NAME
SizeWindow — Asks Intuition to size a window.

S Y N O P S I S
SizeWindow(Window, Del taX, Del taY);

AO DO D l

FUNCTION
This routine sends a request to Intuition asking to size the window by the
specified amounts. The delta arguments describe how much to size the window
along the respective axes.

Note that the window will not be sized immediately. It will be sized the next
time Intuition receives an input event, which happens currently at a minimum
rate of ten times per second and a maximum of sixty times a second. You can
discover when your window has finally been sized by setting the NEWSIZE flag
of the IDCMP of your window. See the "Input and Output Methods" chapter of
this book (chapter 8) for a description of the IDCMP.

This routine does no error-checking. If your delta values specify some far corner
of the universe, Intuition will attempt to size your window to the far corners of
the universe. Because of the distortions in the space-time continuum that can
result from this, as predicted by special relativity, the result is generally not a
pretty sight.

INPUTS
"Window = pointer to the structure of the window to be sized.
DeltaX = signed value describing how much to size the window on the x axis.
DeltaY = signed value describing how much to size the window on the y axis.

RESULT
None.

BUGS
None.

SEE ALSO
MoveWindow().
WindowToFront().
WindowToBackQ.

View Address ViewAddress

NAME
ViewAddress - Returns the address of the Intuition View structure.

SYNOPSIS
View Ad dressQ;

FUNCTION
This routine returns the address of the Intuition View structure. If you want to
use any of the graphics, text, or animation primitives in your window and that
primitive requires a pointer to a View, this routine will return the address of the
View for you.

INPUTS
None.

RESULT
Returns the address of the Intuition View structure.

BUGS
It would be hard for this routine to have a bug.

SEE ALSO
All of the graphics, text, and animation primitives.

i
A-73

ViewPortAddress ViewPortAddress

NAME
ViewPortAddress - Returns the address of a window's ViewPort structure.

SYNOPSIS
ViewPortAddress(Window);

AO

FUNCTION
This routine returns the address of the ViewPort structure associated with the
specified window. This is actually the ViewPort of the screen within which the
window is displayed. If you want to use any of the graphics, text, or animation
primitives in your window and that primitive requires a pointer to a ViewPort
structure, you can use this call.

INPUTS
Window = pointer to the Window structure for which you want the

ViewPort address.

RESULT
Returns the address of the window's ViewPort structure.

BUGS
It would be hard for this routine to have a bug.

SEE ALSO
All of the graphics, text, and animation primitives.

A-74

WBenchToBack WBenchToBack

NAME
WBenchToBack — Sends the Workbench screen in back of all screens.

SYNOPSIS
WBenchToBackQ;

FUNCTION
This routine causes the Workbench screen, if it is currently opened, to go to the
background. This does not "move" the screen up or down; it affects only the
depth arrangement of the screen.

If the Workbench screen was opened, this function returns TRUE; otherwise, it
returns FALSE.

INPUTS
None. — — —

RESULT
If the Workbench screen was opened, this function returns TRUE; otherwise, it
returns FALSE.

BUGS
None.

SEE ALSO
WBenchToFrontQ.

A-75

WBenchToFront WBenchToFront

NAME
WBenchToFront — Brings the Workbench screen in front of all screens.

SYNOPSIS
WBenchToFront();

FUNCTION
This routine causes the Workbench screen, if it is currently opened, to come to
the foreground. This does not "move" the screen up or down; it affects only the
depth arrangement of the screen.

If the Workbench screen was opened, this function returns TRUE; otherwise, it
returns FALSE.

INPUTS
None. ~ ~ ~ ~ ~~ ~~

RESULT
If the Workbench screen was opened, this function returns TRUE; otherwise, it
returns FALSE.

BUGS
None.

SEE ALSO
WBenchToBackQ.

A-76

WindowLimits WindowLimits

h -

NAME
WindowLimits — Sets the minimum and maximum limits of the window.

SYNOPSIS
WindowLimits(Window, MinWidth, MinHeight, MaxWidth, MaxHeight);

AO DO Dl D2 D3

FUNCTION
This routine allows you to adjust the minimum and maximum limits of the
window's size. Until this routine is called, the window's size limits are equal to
the initial limits specified by the call to OpenWindowQ.

If you do not want to change any one of the dimensions, set the limit argument
for that dimension to zero. If any limit argument is equal to zero, that argument
is ignored and the initial setting of that parameter remains undisturbed.

If any argument is out of range (minimums greater than the current size, max-
imums less than the current size), that limit will be ignored, though the others
will still take effect if they are in range. If any argument is out of range, the
return value from this procedure will be FALSE. If all arguments are valid, the
return value will be TRUE.

If the user is currently sizing this window, the new limits will not take effect until
after the sizing is completed-

INPUTS
Window = pointer to a Window structure.
MinWidth, MinHeight, MaxWidth, MaxHeight = the new limits for the

size of this window. If a limit is set to zero, it will be ignored and that
setting will be unchanged.

RESULT
Returns TRUE if everything was in order. If a parameter was out of range
(minimums greater than current size, maximums less than current size), FALSE
is returned, and the errant limit request is not fulfilled (though the valid ones will
be).

BUGS
None.

SEE ALSO
OpenWindowQ

A-77

WindowToBack WindowToBack

NAME
WindowToBack — Asks Intuition to send this window to the back.

SYNOPSIS
WindowToBack(Window)j

AO

FUNCTION
This routine sends a request to Intuition asking to send the window in back of all
other windows in the screen. Note that the window will not be depth arranged
immediately; it will be arranged the next time Intuition receives an input event,
which happens currently at a minimum rate of ten times per second and a max-
imum of sixty times a second.

Remember that Backdrop windows cannot be depth-arranged.

INPUTS
Window = pointer to the structure of the window to be sent to the back.

RESULT
None.

BUGS
None.

SEE ALSO
Mo veWiudow ().
SizeWindow().
WindowToFrontQ.

A-78

WindowToFront Window ToFront

NAME
WindowToFront -- Asks Intuition to bring this window to the front.

SYNOPSIS
WindowToFront(Window);

AO

FUNCTION
This routine sends a request to Intuition asking to bring the window in front of
all other windows in the screen.

Note that the window will not be depth-arranged immediately. It will be
arranged the next time Intuition receives an input event, which happens
currently at a minimum rate of ten times per second and a maximum of sixty
times a second.

Remember that Backdrop windows cannot be depth arranged.

INPUTS
Window = pointer to the structure of the window to be brought to front.

RESULT
None.

BUGS
None.

SEE ALSO
MoveWindow ().
SizeWindowQ.
WindowToBackQ.

A-79

Appendix C

INTERNAL PROCEDURES

This appendix discusses the more esoteric and internal Intuition functions. These func-
tions are definitely not for the casual user. Using these functions can seriously alter the
user's environment, which is potentially a hazardous thing to do. You have more leeway
when using these functions in a machine environment in which you have taken complete
control of the Amiga and do not intend to allow other tasks to coexist with yours. How-
ever, if you intend to have your program run in the multitasking environment, please
use these routines thoughtfully. The effects on other people's programs and on the
user's understanding of the normal course of events can be dramatic at best, and can
cause serious loss of data and loss of the user's confidence in using the Amiga.

With that caveat aside, here are the functions covered in this appendix:

SetPrefs()
This routine allows you to set Intuition's internal state of the Preferences.

AlohaWbrkbenchQ
This routine allows the Workbench tool to make its presence and departure
known to Intuition.

Intuition()
This is the main entry point into Intuition, where input events arrive and are
dispatched.

SetPrefsQ

This routine configures Intuition's internal data states according to the specified Prefer-
ences structure. Normally, this routine is called only by:

o The Preferences program itself after the user has changed the Preferences. The
Preferences program also saves the user's Preferences data into a disk file named
devs:system-configuration.

o AmigaDOS when the system is being booted up. AmigaDOS opens the
devs:system-configuration file and passes the information found there to the
SetPrefs() routine. This way, the user can create an environment and have
that environment restored every time the system is booted.

Note that the intended use for the SetPrefsQ call is entirely to serve the user. You
should never use this routine to make your programming or design job easier at the cost
of yanking the rug out from beneath the user.

The synopsis of this function is:

SetPrefs(Preferences, Size, RealThing)

Preferences - a pointer to a Preferences structure

C-2

Size - the number of bytes contained in your Preferences structure. Typ^ ally,
you will use "sizeof(struct Preferences)" for this argument.

RealThing - a Boolean TRUE or FALSE designating whether or not this is an
intermediate or final version of the Preferences. The difference is that final
changes to Intuition's preferences causes a global broadcast of NEWPREFS
events to every application that is listening for this event. Intermediate changes
may be used, for instance, to update the screen colors while the user is playing
with the color gadgets.

Refer to chapter 11, "Other Features," for information about the Preferences structure
and the standard Preferences procedure calls.

AlohaWorkbenchQ

In Hawaiian, "aloha" means both hello and goodbye. The AlohaWorkbench() routine
allows the Workbench program to inform Intuition that it has become active and that it
is shutting down.

If the Workbench program is active, Intuition is able to tell it to open and close its win-
dows when someone uses the Intuition OpenWorkBenchQ and CIoseWorkBench()
functions to open or close the Workbench screen. If the Workbench program is not
active, presumably it has no opened windows, so there is no need for this
communication.

This routine is called with one of two kinds of arguments—either a pointer to an initial-
ized message port (which designates that Workbench is active and communications can
take place), or NULL to designate that the Workbench tool is shutting down.

When the message port is active, Intuition will send IntuiMessages to it. The messages
will have the Class field set to WBENCHMESSAGE. The Code field will equal either
WBENCHOPEN or WBENCHCLOSE, depending on whether the Workbench applica-
tion should open or close its windows. Intuition assumes that Workbench will comply,
so as soon as the message is replied to, Intuition proceeds with the expectation that the
windows have been opened or closed accordingly.

The procedure synopsis is:

AlohaWorkbenchfWBPort) ~

WBPort - a pointer to an initialized MsgPort structure in which the special
communications are to take place.

C-3

IntuitionQ

This is Intuition's main entry point. All of Intuition's I/O operations originate here.
The input stream flows into Intuition at this portal.

This routine accepts a single argument: a pointer to a linked list of InputEvent struc-
tures. These events have all the real-time state information that Intuition needs to
create its art. Refer to the Amiga ROM Kernel Manual for more information about
InputEvent structure and the operation of the input device.

When IntuitionQ exits, it returns a pointer to a linked list of InputEvent structures.
This list of InputEvents has no dependable correspondence to the list that was initially
submitted to IntuitionQ. Intuition may add events to the list and extract events from
the list. This list of events is normally intended for the console device.

If you are considering feeding false input events to Intuition, please think again. If you
are running in an environment in which you have taken over the machine, it is probably
safe to fool Intuition in a controlled way. If you are running in a multitasking environ-
ment, however, especially one in which the input device is still feeding input events
directly into the stream, you can easily cause more harm than good. You may not be
able to anticipate the things that could go wrong when other programs try to exist in an
environment that you are modifying.

If you are determined to feed false input events to Intuition, it is much safer to add an
input handler to the system than to call Intuition(). Add the input handler to the sys-
tem at a priority higher than Intuition's; the input queue priority of Intuition is 50, so a
priority of 51 will suffice. This will allow your program to see all input events before
Intuition sees them. You can filter the input events, allowing Intuition to see only those
events that you want it to see. Also, you can add synthesized events to the input event
stream. This allows you to fool Intuition in an honest, system-integrated way.

For example, say that you want to position the pointer yourself but you want to let the
user interact with the rest of the system as usual. If you see mouse movement events,
you can filter them out and not let Intuition see them. At the same time, you can create
mouse movement events of your own. On the other hand, if you see keyboard events
you can leave them undisturbed. See the Amiga ROM Kernel Manual for details about
the input-handler queue.

An important note is that IntuitionQ is sometimes required to call the Exec WaitQ
function. Normally, IntuitionQ is called from within the input device's task, so the
input device enters the wait state when these situations arise. If you call IntuitionQ
directly, your task may h#ve to wait. The obvious problem here is the classic lockout
problem—your task cannot create the required response because your task has forced

C-4

itself to wait, which will cause the system to freeze. The best way to get around thb is
to have a separate task that calls IntuitionQ and does nothing more.

The synopsis of this function is:

Intu ition (InputEvent)

InputEvent - a pointer to the first in a linked list of InputEvent structures.

C-5

itself to wait, which will cause the system to freeze. The best way to get around ih.k is
to have a separate task that calb IntuitionQ and does nothing more.

The synopsis of this function is:

Intuition(InputEvent)

InputEvent - a pointer to the first in a linked list of InputEvent structures.

:«

GLOSSARY

Active screen

Active window

Alert

ALT keys

Alternate

Amiga keys

AmigaDOS

Application gadget

Auto-knob

Backdrop wincjow

Bit-map

Bit-plane

The screen containing the active window.

The window receiving user input. Only one window is
active at a time.

Information exchange device displayed by the system or
the application when serious problems occur or when
immediate action is necessary.

Two command keys on the keyboard to the left and right
of the Amiga keys.

An image or border used in gadget highlighting. When
the gadget is selected, the alternate image or border is
substituted for the original image or border.

Two command keys on the keyboard to the left and right
of the space bar.

The Amiga disk operating system.

A custom gadget created by the developer.

The special automatic knob for proportional gadgets;
changes its shape according to the current proportional
settings.

A window that stays anchored to the back of the display.

The complete definition of a display in memory, consisting
of one or more bit-plaises and information about how to
organize the rectangular display.

A contiguous series of memory words, treated as if it were
a rectangular shape. • .__

G-l

_*

Body variables

Boolean gadget

Border area

Border line

Borderless window

Buffer !

Checkmark

CLI

Click

Clipboard

Clipping

Close

Close gadget

Color indirection

Color palette

G-2

Proportional gadget variables that contain the increment
by which the pot variables may change.

A simple yes-or-no gadget.

The area containing border gadgets.

The default double-line drawn around the perimeter of all
windows, except Borderless windows.

A window with no drawn border lines.

An area of continuous memory, typically used for storing
blocks of data such as text strings.

A small image that appears next to a menu item showing
that the user has selected that item. By default, the
checkmark is y/ , but a custom image can be
substituted.

See Command Line Interface.

To quickly press and release a mouse button.

A Workbench file used to store the last data cut
(removed) from a project.

Causing a graphical rendering to appear only in some
bounded area, such as only within the non-concealed areas
of a window.

To remove a window or screen from the display.

Gadget in the upper left corner of a screen or window
that the user selects to request that a window or screen be
closed.

The method used by Amiga for coloring individual pixels,
in which the binary number formed from all the bits that
define a given pixel refers to one of the 32 color registers.
Each of the 32 color registers can be set equal to any of
4,096 colors.

The set of colors available in a screen.

Color register

Column

Command keys

Command Line Interface

Complement

Console devibe

Container

Control escape sequence

Controller

Coordinates

Copper

Coprocessor

Cursor keys

Data structure

One of 32 hardware regbters containing colors that you
can define.

A set of adjoining pixels that forms a vertical line on the
video display.

Keys that combine with alphanumeric keys to create com-
mand key sequences, which substitute for making selec-
tions with the mouse buttons.

The conventional interface to system commands and
utilities.

The binary complement of a color, used as a method of
gadget highlighting and in flashing the screen. To com-
plement a binary number means to change all the Is to Os
and all the Os to Is.

A communication path for both user input and program
output. Especially recommended for input/output of
text-only applications.

Part of a proportional gadget; the area within which the
knob or slider can move; the select box of the gadget.

Special sequences of characters that start with the
"Escape" character.

A hardware device, such as a mouse or a light pen, used
to move the pointer or furnish some other input.

A pair of numbers shown in the form (x,y), where x is an
offset from the left side of the display or display com-
ponent and y is an offset from the top.

Display-synchronized coprocessor that handles the Amiga
video display.

See Copper.

The arrow keys, which can be used as a substitute for
using the mouse to move the pointer.

The grouping together of the components required to
define some data element.

G-3

Depth Number of bit-planes in a display.

Depth-arrangement gadgets Gadgets in the title bar of a screen or window used to
send the screen or window to the back of the display or
bring it up front.

Disable

Display

Display field

Display memory

Display modes

Double-click

Double-menu requester

Drag

Drag gadget

Dual-playfield mode

Edit menu

Enable

G-4

To make something unavailable to the user.

To put up a screen, window, requester, alert, or any other
graphics object on the video display.

One complete scanning of the video beam from top to
bottom of the video display screen.

The RAM that contains the information for the display
imagery; the hardware translates the contents of the
display memory into video signals.

Display parameters set in the definition of a screen. The
modes are high or low horizontal resolution, interlaced or
non-interlaced vertical resolution, sprite mode, and dual-
playfield mode.

To quickly press and release a mouse button twice.

A requester that the user can open by double-clicking the
mouse menu button.

To move an icon, gadget, window, or screen by placing
the pointer over the object to be moved and holding down
the selection button while moving the mouse.

The portion of a window or screen title bar that contains
no other gadgets, used for moving a window or screen
around on the video display.

A display mode that allows you to manage two separate
display memories, giving you two separately controllable
displays at the same time.

A menu for text processing that includes various text-
editing functions.

To make something available to the user; a menu item or
gadget that is enabled £an be selected by the user.

Exec

Extended selection

Fill

Flag

Font

Gadget

Ghost

Ghost shape

Gimmezerozero window

Header file

High-resolution mode

Highlight

Hit select

Hold-and-modify mode

Hue

Low-level primitives that comprise the Amiga multitask-
ing operating system.

A technique for selecting more than one menu item at a
time.

To put a color or pattern within an enclosed area.

A mechanism for selecting an option or detecting a state;
a name representing a bit to be set or cleared.

A set of letters, numbers, and symbols that share the
same basic design.

Any of the control devices provided within a window,
screen, or requester; employed by users to change what is
being displayed or to communicate with an application or
with Intuition.

Display less distinctly (overlay an area with a faint pat-
tern of dots) to indicate that something, such as a gadget
or a window, is not available or not active.

The new outline of a window that shows briefiy when the
user is dragging or sizing a window.

A window with a separate bit-map for the window border.

A file that is included at the beginning of a C program
and contains definitions of data types and structures, con-
stants, and macros.

A horizontal display mode in which 640 pixels are
disp- ed across a horizontal line.

To modify the display of a selected menu item or gadget
in a way that distinguishes it from its non-selected state.

A method of gadget selection in which the gadget is
unselected as soon as the select button is released.

A display mode that gives you extended color selection —
up to 4,096 colors on the screen at one time.

The characteristic of a color that is determined by the
color's position in the color spectrum.

G-5

Icon

IDCMP

Initialize

Input even

Interlaced mode

IntuiMessage

KeyMap

Knob

Library

Linked list

Low-resolution mode

Menu

Menu bar

Menu button

G-6

A visual representation of an object in the Workbench,
such as a program, file, or disk.

"Intuition Direct Communications Message Ports"; the
primary communication path for user input to an applica-
tion. Gives mouse and keyboard events and Intuition
events in raw form. Provides a path for communicating
to Intuition.

To set up an Intuition component with certain default
parameters.

The message created by the input device whenever a sig-
nal is detected at one of the Amiga input ports.

A vertical display mode in which 400 lines are displayed
from top to bottom of the video display.

The input message created by Intuition for application
programs; the message is the medium in this case.

Translation table used by the console device to translate
keycodes into normal characters.

Part of a proportional gadget; the user manipulates the
knob to set a proportional value.

A collection of predefined functions that can be used by
any program.

A collection of like objects linked together by having a
pointer variable in one contain the address of the next;
the last object in the list has a next-pointer of NULL.

A horizontal display mode in which 320 pixels are
displayed across a horizontal line.

A category that has menu items associated with it. One
of the entries in the menu list displayed in the screen title
bar.

A strip in the screen title bar that shows the menu list
when the user holds down the menu button.

The right-hand button on the mouse.

Menu item

Menu list

Menu shortcut

Menu title

Message poris

Mouse

Multitasking

Mutual exclusion

Non-interlaced mode

Null-terminated

OSset

Open

Option

Parallel port

Pen

One of the choices in a menu; the options presented to the
user.

List of menus displayed in the screen title bar when the
user holds down the menu button.

An alternate way of choosing a menu item by pressing a
key on the keyboard while holding down the right
AMIGA key.

See Menu.

A software mechanism managed by the Amiga Exec that
allows intertask communications.

A controller device used to move the pointer and make
selections.

A system in which many tasks can be operating at the
same time, with no task forced to be aware of any other
task.

The principle that says that selecting a menu item (or
gadget) can cause other menu items (or gadgets) to
become deselected.

A display mode in which 200 lines are displayed from top
to bottom of the video display.

A string that ends with a byte of zero; text strings must
be null-terminated.

A position in the display that is relative to some other
position.

For the user, to display a window. For an application, to
display a window or screen.

A feature that, once selected, persists until it is
deselected.

A connector on the back of the Amiga used to attach
printers and other add-ons.

A variable containing a color register number used for
drawing lines or filling background.

G-7

Pixel

Playfield

Pointer

Pot variables

Preferences

Preserve

Primitives

Project melnu

Proportional gadget

RAM

Raster

RastPort

Refresh

Render

Requester

G-8

Short for "picture element." The smallest addressable ele-
ment in the video display. Each pixel is one dot of color.

One of the basic elements in Amiga graphics; the back-
ground for all the other display elements.

A small object, usually an arrow, that moves on the
display when the user moves the mouse (or the cursor
keys). It is used to choose menu items, open windows,
and drag and select other objects.

Proportional gadget variables that contain the actual pro-
portional values.

A program that allows the user to change various settings
of an Amiga.

To keep overlapped portions of the display in hidden
memory buffers.

Amiga low-level library functions.

A menu for opening and saving project files.

A gadget used to display a proportional value or get a
proportional setting from the user. Consists of a knob or
slider and a container.

Random access (volatile) memory.

The area in memory where the bit-map is located.

The data structure that defines the general parameters of
display memory.

To recreate a display that was hidden and is now
revealed.

To draw or write into display memory.

A rectangular information exchange region in a window.
When a requester appears, the user must select a gadget
in the requester to close the requester before doing any-
thing else in the window.

Resolution

Screen

Scroll

Scroll bar

Select

Select box

Select button

Selected option

Selection shortcut

Serial port

Shortcut

Simple Re

Size

Sizing gad

Slider

resh

;et

On a video display, the number of pixels that can be
displayed in the horizontal and vertical directions.

A full-width area of the display with a set color palette,
resolution, and other display modes. Windows open in
screens.

To move the contents of display memory within a
window.

A proportional gadget with which the user can display
different parts of the display memory.

To pick a gadget or menu item.

The sensitive area of a gadget or menu item. When the
user moves the pointer within a gadget's select box, the
gadget becomes selected.

The left-hand button on a mouse.

An option that is currently in effect.

A quick way to select a gadget by pressing some key while
holding down the left Amiga key.

A connector on the back of the Amiga used to attach
modems and other serial add-ons.

A quick way, from the keyboard, to choose a menu item
or select a gadget.

A method of refreshing window display in which con-
cealed areas are redrawn by the program when they are
revealed

To change the dimensions of a window or screen.

A gadget for the user to change the size of a window or a
screen.

Part of a proportional gadget; used to pick a value within
a range by dragging the slider or by moving the slider by
increments with clicks of a mouse button.

G-9

Smart Refres

Sprite

Sprite mode

String gadget

Structure

Submenu

SuperBitMap Refresh

SuperBitMap Window

System gadget

Task

Text cursor

Title bar

Toggle select

Tool

G-1O

A method of refreshing window display in which Intuition
keeps information about concealed areas in off-display
buffers and refreshes the display from this information. If
the window is sized, the program may have to recreate
the display.

A small, easily movable graphic object. You can have
multiple sprites in a window at the same time.

A display
windows.

mode that allows you to have sprites in your

A gadget that prompts the user to enter a text string or
an integer.

See data structure.

An additional menu that appears when some menu items
are chosen by the user.

A method of window refresh where the display is
recreated from a separate bit-map area.

A window with its own bit-map; doesn't use the screen's
bit-map.

Predefined gadgets for windows and screens; for screens,
dragging and depth arranging; for windows, dragging,
depth arranging, sizing, and closing.

Operating system module or application program. Each
task appears to have full control over its own virtual
68000 machine.

In programs containing text and in string gadgets, a
marker that indicates your position in the text.

A strip at the top of a screen or window that contains
gadgets and an optional name for the screen or window.

A method of gadget selection in which the gadget remains
selected when the user releases the select button and does
not become deselected until the user picks it again.

An application program.

Topaz

Transparent

Type style

Typeface

Undo

UserPort

Vector

Video display

View

ViewPort

Virtual term nal

Window

WindowPort

Workbench

Workbench screen

The default system font. It is a fixed-width font in two
sizes: 60 columns wide and 8 lines tall; 80 columns wide
and 9 lines tall.

A special color register definition that allows a back-
ground color to show through. Used in dual-play field
mode.

A variation of a typeface, such as italic or bold.

See Font.

A text editing function that reverses an action.

The message port created for you when you request
IDCMP functionality. Your program receives messages
from Intuition via this port.

A line segment.

Everything that appears on the screen of a video monitor
or television.

The graphics library data structure used to create the
Intuition display.

The graphics library data structure used to create and
manage the Intuition screen.

An Intuition window; it accepts input from the user and
displays output from the application.

Rectangular display in a screen that accepts input from
the user and displays output from the application.

The message port created for you when you request
IDCMP functionality. You respond to messages from
Intuition via this port.

A program to manipulate AmigaDOS disk file objects.

The primary Intuition screen.

G-ll

Index

Active screen^ 26
Active windoiv, 49
AddGadgetl0, 92, 114
Alerts

creating,
display, 154
types of, 1;

AllocMemQ,
AllocRasteri

77, 212
176

AllocReme4ber(), 212, 214
AllocSignalQ, 171
Alternate (ALJT) keys, 207
AMIGA keys |

as command keys, 207
in command-key sequences, 124
in Workbench shortcuts, 208

Application gadgets
(also see gajdgets), 55, 86

Assembly language, 222
AutoRequest(), 140, 142, 145, 151, 153
Backdrop winjdow, 52-53
Beeping, 221 |
BeginRefres^Q, 61, 74
Bit Map |

allocating njiemory for, 75
in SuperBitMap windows, 53
preparing, 15

Bit-planes j
in image display, 192
in screens, ^3

Boolean gadgets, 94-95
Border variables, 51
Border structure, 184-85
Borderless window, 50-51
Borders !

color of, 56,| 183
coordinates of, 182
defining, 183.
DrawBorderQ, 180, 199

drawing modes for, 183
gadgets in, 92
in Borderless windows, 50
in Gimmezerozero windows, 51-52
linking, 184
thickness of, 56
window, 56-57
window variables for, 56-57

BuildSysRequest(), 146
CDAskKeyMap(), 177
CDSetKeyMap()? 177
Character-wrap, 176
CHECKED and CHECKIT

in checkmark, 122
in mutual exclusion, 123

Checkmark
in menus, 122-24

Chip memory, 76-77, 198
ClearDMRequest(), 73, 144, 152
ClearMenuStripQ, 71, 120, 126, 137
ClearPointer(), 62, 73
Close gadget, 86
CloseQ, 174
CloseScreen(), 29, 43
CloseWindowQ, 50, 66, 86, 172
CloseWorkBench(), 29, 44, 230
Color

in Borders, 184
in Images, 190, 193
in IntuiText, 186
in screens, 33
in windows, 63
of Workbench, 216

Command keys
sequence events, 206
sequences of, 124-25
style, 227

Complementing, 93
Console device - -

1-1

character-wrap, 176
for input, 160
in text output, 160, 175
IOStdReq, 174-76
keymap^ 176
using directly

reading from, 175
writing to windows, 175

using through AmigaDOS, 174
Control (CTRL) key, 207
Copper

in custoija screens, 29
CurrentT1iine(), 221
Custom gadgets

in screens, 38
in windows, 47

Custom pointer, 76-77
Custom screens _

closing, 39
managed I by applications, 30
managed by Intuition, 30
rendering in, 31
using thel Copper in, 29

Depth
in Images, 194
in screens, 33

Depth-arrangement gadgets, 85
Display

user settings, 216
Display elenient, 180
Display memory

pointers into, 200
RastPort , 24
screen, 24

Display moc(es
in custom screens, 32
set by screen, 24

DisplayAlert(), 155
DispIayBeep(), 142, 221
DoIO(), 17$
DoubleCIick(), 216
Dragging gadget, 25, 85-86
DrawBorderQ, 180, 199
DrawGList(), 222 >
Drawlmage(), 180, 199
Dual-playfield mode, 32
EndRefreshQ, 61, 74

EndRequestQ, 72, 152
Escape (ESC) key, 207
Flashing the display, 221
Fonts

custom, 35
default, 35
in creating text, 187
in string gadgets, 101
Topaz, 35
user settings of, 216

FreeRemember(), 2 1 2

Function keys, 207
Gadget style, 226
Gadget structure, 104-109
Gadgets

Boolean type
hit select, 94-95
toggle select, 94-95

combining types, 102-103
enabling and disabling, 94
Gadget structure, 104-109
hand-drawn, 87
highlighting, 93
in window borders, 92
integer type, 102
line-drawn, 88
pointer broadcasts, 91
proportional type

auto-knob, 97
body variables, 96
changing variables of, 99
components of, 95-99
container, 97
example of, 98
knob, 96-97
pot variables, 96-98
Proplnfo structure, 110-11
setting up, 98

select box

absolute dimensions, 90
location of, 90
relative dimensions, 90

selection of, 89-92
steps in creating, 103
string type
* buffers, 99-100

editing functions, 101

1-2

font, 101
Stringlnfo structure, 112-13

without imagery, 89
GetDefPrefs()j 215, 220
GetPrefs(), 170, 214, 220
Ghosting, 49
Gimmezerozero window

gadgets in, 52
requesters in, 52

Gimmezerozero jwindow type, 51-52
Graphics I

Amiga primitives
in screens, $0-31
in windows; 48, 51-52, 56
using, 200-^01

images, 189-9^
lines, 181-84 !
special Intuition functions, 199

Header files, 10 !
Hello World, 18
Highlighting

gadgets, 93
High-resolution mode, 32
Hold-and-modify mode, 33
IDCMP

allocating ports, 171
closing, 165 j
example of, l t2
flags, 167-71 |
IntuiMessages, 165-66
message ports, 165
monitor task, 171-72
opening, 165
requester features, 145
UserPort, vil
verification functions, 171
WindowPoilt, 171

Illustration datai, types, 180
Images

data for, 189-92
data memory j 198
defining, 189
displaying, 181, 192
DrawImageQ, 180, 199
example of, 196
Image structure, 195
in gadgets, 87, 98-99

location of, 189
PrintlText, 180, 199

InitBitMap(), 75
InitRequester(), 147
Inner window

in Gimmezerozero windows, 51
with the console device, 51

Input device, 159
Input event, 159
Input stream, 159
Input/output

console device, 173-77
IDCMP, 164
in complex programs, 162
in game programs, 161
in text programs, 162
Input device, 159
input stream, 159
paths, 159

Integer gadgets, 102
Interlaced mode, 32
IntuiMessage structure, 165-66
IntuiMessages, 165-66
IntuiText structure, 187-89
IntuiTextLength(), 200
lOStdReq structure, 174-76
ItemAddress(), 127, 138
Key repeat, 216
Keyboard

ALT keys, 207
AMIGA keys, 124, 207-8
as alternate to mouse, 208
command keys, 207
CTRL key, 207
ESC key, 207

Keymap, 176
Library

opening, 10
Lines

and Border structure, 184
colors of, 183
coordinates of, 182
defining, 181
displaying, 181
drawing modes for,
in gadgets, 181
linking, 184

1-3

LoadViewiO, 220
Low-resolution mode, 32
MakeScreen(), 44, 221
MakeVPort(), 221
Memory I

allocatiori of, 212
deallocatjon of, 212
for imagqs, 198
for special chips, 76-77
for sprites, 198
Remember structure, 213
RememtyerKey, 213
special chjips, 198

Menu boxes)
item in, 1J20-22
subitem iji, 121

Menu commands
action tyj>e, 122-23
actions, 118
attribute type, 122-23
attributed, 118

r

Menu items!
command! key shortcuts, 208
enabling £J,nd disabling, 125-26

Menu messages
from user!selection, 125-27
MENUC^NCEL, 130
MENUH0T, 130
MENUNIJLL, 127, 128
MENUPI^K, 125, 127
MENUVEJRIFY, 129
MENUWilTING, 130

Menu numbers
accessing of, 126-29
functioning of, 126-29

Menu operations
intercepting

MenuVtjrify, 129
RMBTRAP, 130

Menu selection
by user, l£0

Menu strips
changing, 126
removing, 120
submitting, 120

Menu style j
edit menufc, 225

project menus, 224
Menu system

activating, 119
Menu structure, 133-34
Menultem structure, 134-37
Menus

and mutual exclusion, 122-24
and requesters, 130
checkmark, 122
command-key sequences, 124-25
designing, 131
enabling and disabling, 125-26
Menu structure, 133-34
Menultem structure, 134-37
menu-strip, 131
menu-verify function, 129
selection from, 126-27

Message ports, 165, 171
Messages

about gadget selection, 91
about pointer movements, 62
IDCMP, 165
menu selection, 126
menus, 129-30
mouse, 206
with verification functions, 171

ModifylDCMPO, 145, 165, 167, 171-72
ModifyProp(), 99, 115
Monitor task

IDCMP, 171-72
Mouse

basic activities of, 204
combining buttons and movement, 205
dragging with, 205
keyboard as alternate to, 208
left (select) button, 204
messages, 206
right (information transfer) button, 205
style, 229
user setting of

double-click, 216
speed, 216

Mouse button philosophy, 204
MoveQ, 18
MoveScreenQ, 43
hioveSprite(), 222
Move Win dow(), 74

1-4

MrgCop(), 220
Mutual exclusion

in gadgets, 192
in menus!, 122-24

NewScreeJQ structure, 38-41
NewWindow structure, 65-69
Non-interlaced mode, 32
OffGadget(), 94, 108, 114-15, 226
OffMenuQ, 126, 133, 136, 138, 224
OnGadgetO, 94, 108, 114
OnMenuQ, 126, 133, 136, 138
OpenDevfce(), 173, 175
Open(), 174
OpenLibr^ry(), 10, 18
OpenScre£n(), 11, 38, 42, 49
OpenWinkowQ, 11, 49, 64, 71, 171
OpenWorpcBench(), 29, 43, 230
Philosophy

user interface, 1, 8
Pixel, 32 !
PlaneOnOff, 192-94
PlanePick, 1192-94
Pointer I

attaching to window, 79
broadcasts, 61
colors, 62
custom, 62, 76-77
in gadget selection, 89-92
position \n Gimmezerozero windows, 51
position in windows, 61-62
variables;, 61-62

Preferences
getting user settings, 214
structure, 217-19

Preserving !the display
Simple Refresh, 58
Smart Refresh, 59
SuperBitMap, 60

Printer characteristics, 216
Printers, 216
PrintITe*t(), 180, 199
Proplnfo structure, 99, 110-11
Proportional gadgets, 95-99
RastPort structure, 200
Read(), vU
RefreshGadgetsQ, 115
RemakeDisplayQ, 45, 221

Remember structure, 213
Remembering, 211
RemoveGadget(), 92, 114
Reply(), 165, 169
ReplvMsg(), 171
ReportMouse(), 62, 72
Requester structure, 147-51
Requesters

application type, 142
as menus, 130
as super menus, 140
custom bit-map type, 151
designing, 143, 147
display position, 143
displaying, 140-41, 143
double-menu, 144
gadgets in, 144

- IDCMP features, 145
Intuition-rendered type, 150
pointer in, 143
removing, 144
rendering, 143
simple, 145-46, 151
structure, 147-51
user-requested, 144

Request(), 72, 147, 152
RethmkDisplay(), 44, 220
Screen structure, 41
Screens

active, 26
and display modes, 32
color of, 33
custom, 29
depth of, 33
depth-arranging gadget in, 85
dragging gadget in, 85
gadgets in

custom gadgets, 38
system gadgets, 25

height and width of, 35-36
location limits of, 36
NewScreen structure, 38
Screen structure, 41
standard, 27
starting location 0^35-36

i title
current, 37

1-5

default, 37
effect of Backdrop window on, 38

Workbench, 28
ScreentoBackQ, 43
ScreentoFront(), 43
SendIO()» 175
SetDMRequest(), 72, 144, 147, 152
SetMenuStrip(), 71, 120, 126, 137
SetPointer(), 62, 73, 76, 79
SetRGB4(), 33, 62, 231
SetWindowTitles(), 38, 73-74
Shortcuts

in menus, 228
in selection, 227

ShowTitle(), 31, 38, 42, 53
Simple Refresh, 58
SizeWindow(), 74
Sizing gadget, 85
Smart Refrtesh, 60-61
Speciallnfo structures, 110-13
Sprite mod0, 32
Sprite pointer

colors, ^
Sprites

data memory, 76
data structure, 77-78
in pointer, 62
in windows and screens, 222

String gadgets, 99-101
Stringlnfbj structure, 99, 112-13
Structures

Border, 184-85
Gadget, 104-109
Image, 195
IntuiMessage, 165-66
IntuiTexjt, 187-89
IOStdReq, 174-76
Menu, 133-34
Menultem, 134-37
NewScreen, 38-41
NewWindow, 65-69
Preferences, 217-19
Proplnfo, 110-11
RastPort, 200 ^
Remember, 213
Requester, 147-51
Screen, 4^

Speciallnfo, 110-13
sprite, 77-78
Stringlnfo, 112-13
View, 200
ViewPort, 200
Window, 70-71

SuperBitMap refresh, 60
SuperBitMap window

setting up the BitMap, 75-76
SuperBitMap window type, 53
System gadgets

in screens, 25
in windows, 54
placement of, 83-84

Text
colors of, 186
defining, 185
displaying, 181, 187
drawing modes, 186
fonts, 187
input/output of, 160, 175
IntuiText structure, 187-89
linking, 187
PrintIText(), 180, 199
user settings, 216

TextAttr structure, 35
Text(), 18
Time

getting current values, 221
Title

screen, 37-38
window, 51, 56

Title bar
screen, 25
window, 56

Topaz font, 34
Type styles, 34-35
User settings

Preferences, 214
Verification functions

IDCMP, 171
ViewAddress(), 200, 201
View

address of, 200
remaking, 220

ViewPortAddressQ, 200, 201
ViewPort

1-6

k

address of, ^00
remaking, 2|0

Virtual display memory, 57
Virtual terminial, 2, 46
Virtual terminjal windows, 47
Wait(), 14, 1(J9, 171
WBenchToBack(), 44
WBenchToFront(), 44
Window structure, 70-71
WindowLimitsO, 63, 69, 73
Windows ;

activating, 49
and screen title, 37-38
application gadgets in, 55
Backdrop type, 52-53
border gadgets, 92
Borderless type, 50-51
close gadget in, 86
closing, 49-50
colors in, 63|
depth-arranging gadget in, 85
dimensions 6f

limits on, 63
starting, $3

dragging gadget in, 85
Gimmezerozero type, 51-52
graphics and text in, 62
input/output in, 48
location of, 65
NewWindow structure, 65-69
opening, 49
pens in, 63
pointer, 61-$2
preserving the display, 57-60
refreshing the display

NOCAREREFRESH, 61
Simple Refresh, 58, 60
Smart Refresh, 59
SuperBit^lap, 60

sizing gadget in, 85
special types of, 50
SuperBitMap type, 53
system gadgets in, 54-55
Window structure, 70-71

WindowToBack(), 75
WindowToFront(), 75
Workbench

as a screen, 28
as an application program, 29
color of, 28, 216
library, 29
shortcut key functions, 208

WriteQ, 174

1-7

Appendix B

INTUITION INCLUDE FILE

This appendix contains the Intuition "include" file, which contains the definitions of all
the Intuition data types and structures, constants, and macros. You include this file in
all Intuition-based applications.

B-l

#ifndef INTlflTIONJNTUITIONJH
#define INTUITIONJNTUITIONJI TRUE

• intuitjion.h ***
Commodore-Amiga, Inc.

intuition.h main include for c programmers

Modification History
date : author: Comments

1-30-85 - = R J = -
10-03-^5

created this file!
Support for HP printers

#ifhdef INTUITIONJNTUITIONBASELH
^include "intuition/intuitionbase.h"
#endif

#ifndef GRAPHICS.GFXJi ~
#include "gfaphics/gfx.h"
#endif

#ifndef GRAPHICS.CLIPJH
#include "gifaphics/clip.h"
#endif

#ifndef
#include "graphics/view.h
#endif

#ifndef GRAPHICS^RASTPORTJJ
#include "graphics/rastport.h*
#endif

#ifndef GRAPHICSJLAYERSJH
#include "graphics/layers.h"
#endif j

#ifndef GRAPHICSLTEXTJH
#include "graphics/text.h1*
#endif

#ifndefEXEl :J>ORTSJI
^include "exec/ports.h"
#endif

#ifndef DEVICES.TIMERJi
#include "devices/timer.h"
#endif

B-2

#ifndef DEVICES JNPUTEVENTJH
#include "devipes/inputevent.h"
#endif I

I* = = = Border =====

/* Data type Border, used for drawing a series of lines which is intended for
* use as a border drawing, but which may, in fact, be used to render any
* arbitrary vector shape.
* The routine DrawBorder sets up the RastPort with the appropriate
* variables, then does a Move to the first coordinate, then does Draws
* to the subsequent coordinates.
* After all the Draws are done, if NextBorder is non-zero we call DrawBorder
* recursively.
V

struct Border

*/
*/

SHORT L^ftEdge, TopEdge;
UBYTE FriontPen, BackPen;
UBYTE DrawMode;
BYTE Count;
SHORT *XY;
struct Border *NextBorder;

/* initial offsets from the origin */ .__
/* pen numbers for rendering */
/* mode for rendering */
/* number of XY pairs */
/* vector coordinate pairs relative to LeftTop */
/* pointer to any other Border too */

/ £ _ ^ . _ _ _ /"** aHlo'jif' • ' '• —— • • * *'• ' ' '

/ * : • ! , . "

struct Gadget |
{ l

struct Gadget *NextGadget; /* next gadget in the list */

*/
*/

SHORT Le^Edge, TopEdge;
SHORT Width, Height;

USHORT Flfgs;

USHORT Aqtivation;

USHORT GadgetType;

/* "hit box" of gadget */
/* "hit box" of gadget */

/* see below for list of defines */

/* see below for list of defines •/

/* see below for defines */

/* | appliprog can specify that the gadget be rendered as either as Border
*|or an Image. This variable points to which (or equals NULL if there's
* | nothing to be rendered about this gadget)

APTR GadgetRender;

B-3

APTR

LONG

/* appliprog can specify "highlighted" imagery rather than algorithmic
• this can point to either border or image data

V
SelectRender;

struct IntuiText *GadgetText; /* text for this gadget */

]/* by using the MutualExclude word, the appliprog can describe
* which gadgets mutually-exclude which other ones. The bits
* in MutualExclude correspond to the gadgets in object containing
* the gadget list. If this gadget is selected and a bit is set
* in this gadget's MutualExclude and the gadget corresponding to
* that bit is currently selected (e.g., bit 2 set and gadget 2
* is currently selected) that gadget must be unselected.
* Intuition does the visual unselecting (with checkmarks) and
* leaves it up to the program to unselect internally

!*/
MutualExclude; /* set bits mean this gadget excludes that gadget */

/* pointer to a structure of special data required by proportional,
! * string and integer gadgets
!

APTR Speciallnfb;

USHORT Gadget©;
APTR UserData;

/* user-definable ID field */
/* ptr to general-purpose user data (ignored by In) */

/* — FLAGS SET BY THE APPLIPROG */
/* combinations in these bits describe the highlight technique to be used */
#define GAD0HIGHBITS 0x0003

0x0000 /* complement the select box */
0x0001 /* draw a box around the image */
0x0002 /* blast in this alternate image */
0x0003 /* don't highlight */

#defme GAD0HCOMP
#define GADGHBOX
#define GADGHMAGE
#define GADGHNONE

f* set this flag if the GadgetRender and SelectRender point to Image imagery,
|* clear if it's a Border

#define GADGIMAGE 0x0004

combinations in these next two bits specify to which corner the gadget's
Left & Top coordinates are relative. If relative to Top/Left,

| these are "normal" coordinates (everything is relative to something in
•I this universe)
*/

#define GRELBOTTOM 0x0008 /* set if rel to bottom, clear if re! top */
#define GRELRIGHT 0x0010 /* set if rel to right, clear if to left */
/* set the GREL WIDTH bit to spec that Width is relative to width of screen */
#define GREL WIDTH 0x0020
/* set the GRELHEIGHT bit to spec that Height is rel to height of screen */

B-4

#define GRELHEIGHT 0x0040

/* the SELECTEP flag is initialized by you and set by Intuition. It
* specifies whether or not this gadget is currently selected/highlighted
*/

#define SELECTED 0x0080

/* the GADGDISABLED flag is initialized by you and later set by Intuition
* according to your calls to On/OffGadget(). It specifies whether or not •
* this gadget is currently disabled from being selected

V
#define GADGDISABLED 0x0100

/* — These are tihe Activation flag bits */
/* RELVERIFY is set if you want to verify that the pointer was still over
* the gadget when the select button was released
*/

#define RELVERIFY 0x0001

/* The flag GADGMMEDIATE, when set, informs the caller that the gadget
* was activated when it was activated. This flag works in conjunction with
* the RELVERIFY flag

V
#define GADGMMEDIATE 0x0002

/* The flag ENDGADGET, when set, tells the system that this gadget, when
* selected, causes the requester or AbsMessage to be ended. Requesters or
* AbsMessages that are ended are erased and unlinked from the system

#define ENDGAt>GET 0x0004

/* the FOLLOWMOUSE flag, when set, specifies that you want to receive
* reports on mouse movements (i.e., you want the REPORTMOUSE function for
* your window). When the gadget is deselected (imi ^diately if you have

no RELVERIFY) the previous state of the REPORT MOUSE flag is restored
You probably want to set the GADGMMEDIATE uig when using FOLLOWMOUSE,
since that's the only reasonable way you have of learning why Intuition
is suddenly sending you a stream of mouse movement events. If you don't
set RELVERIFY, you'll get at least one Mouse Pc ition event.

#define FOLLOWMOUSE 0x0003

/* if any of the BORDER flags are set in a gadget that's included in the
* gadget list when a window is opened, the corresponding border will
* be adjusted to make room for the gadget
*/

0x0010
0x0020
0x0040
0x0080

#define RIGHTBORDER
#define LEFTBORDER
#define TOPBORDER
#define BOTTOMBORDER

B-5

#define TOGGLESELECT 0x0100 /* this bit for toggle-select mode */

#define STRINGCENTER
#define STRINGRIGHT

#define LONGINT

#define ALTKEYMAP

/* — GADbET TYPES —

0x0200 /* should be a Stringlnfo flag, but it's OK*/
0x0400 /* should be a Stringlnfo flag, but it's OK*/

0x0800 /* this string gadget is actually LONG Int */

0x1000 /* this string has an alternate keymap */

"I
/* These are the gadget type definitions for the variable GadgetType

* gadget number type MUST start from one. NO TYPES OF ZERO ALLOWED.
• first conqes the mask for gadget flags reserved for gadget typing

*/ 1
/* all gadget global type flags (padded) •/
/* 1 = SysGadget, 0 = AppliGadget */
/* 1 = ScreenGadget, 0 = WindowGadget */
/* 1 = gadget for GMMEZEROZERO borders */
/* 1 = this is a requester gadget */

OxFCOO
0x8000
0x4000
0x2000
0x1000

#define GADGETTYPE
#define SYSGADGET
#define SCRGADGET
#define GZZGADGET
#define REQGADGET
/* system gadgets */
#define SIZING 0x0010
#define WDRAGGING 0x0020
#define SDRAGGING 0x0030
#define WUPFRONT 0x0040
#define SUPFRONT 0x0050
#define WDOWNBACK 0x0060
#define SDQWNBACK 0x0070
#define CLOSE 0x0080
/* applicatipn gadgets */
#define BOOLGADGET 0x0001
#define GADGET0002 0x0002
#define PROPGADGET 0x0003
#define STRGADGET 0x0004

/ # • • - =

/* This is a brief image structure for very simple transfers of
* image data to a RastPort
*/ I

struct Image

___________________ .w

SHORT LeftEdge;
SHORT TopEdge;
SHORT Width;
SHORT Height, Depth;
USHORT *ImageData;

/* starting offset relative to some origin */
/* starting offsets relative to some origin */
/* pixel size (though data is word-aligned) */
/* pixel sizes */
/* pointer to the actual word-aligned bits */

B-6

UBYTE

struct

/* tThe PlanePick and PlaneOnOff variables work much the same way as the
* Equivalent GELS Bob variables. It's a space-saving
* jnechanisra for image data. Rather than defining the image data
* for every plane of the RastPort, you need define data only
* jbr the planes that are not entirely zero or one. As you
* Refine your imagery, you will often find that most of the planes
* j\RE just as color selectors. For instance, if you're designing
* $. two-color gadget to use colors two and three, and the gadget
* i^ill reside in a five-plane display, bit-plane zero of your
* imagery would be all ones, bit-plane one would have data that
* describes the imagery, and bit-planes two through four would be
* 1̂1 zeroes. Using these flags allows you to avoid wasting all
* ihat memory in this way: first, you specify which planes you
* ^vant your data to appear in using the PlanePick variable. For
* $ach bit set in the variable, the next "plane" of your image
* <jlata is blitted to the display. For each bit clear in this
* tariable, the corresponding bit in PlaneOnOff is examined.
* if that bit is clear, a "plane" of zeroes will be used.
* jf the bit is set, ones will go out instead. So, for our example:
* | GadgetPlanePick = 0x02;
* | GadgetPlaneOnOff = 0x01;
* l^ote that this also allows for generic gadgets, such as the
* System gadgets, which will work in any number of bit-planes.
* Note also that if you want an Image that is only a filled
* ifec tangle, you can get this by setting PlanePick to zero
* (pick no planes of data) and set PlaneOnOff to describe the pen
* <j;olor of the rectangle.
*/

PlanePick, PlaneOnOff;

/* if the Nextlmage variable is not NULL, Intuition presumes that
* |t points to another Image structure with another Image to be
* rendered

Im; ,ge *NextImage;

• ===== IntuiMessage = * /
- = = = = = s = = : t = = = = = = * /

ct IntuiMessaige

struct Message ExecMessage;

ULONG

/* the Class bits correspond directly with the ID CMP Flags, except for the
* special bit LONELYMESSAGE (defined below)
*/

Class;

B-7

\ /* the Code field is for special values like MENU number */
USHORT: Code;

! /* the Qualifier field is a copy of the current InputEvent's Qualifier */
USHORT: Qualifier;

/* lAddress contains particular addresses for Intuition functions, like
I * the pointer to the gadget or the screen

• /
APTR lAddress;

/* When getting mouse movement reports, any event you get will have the
* the mouse coordinates in these variables, the coordinates are relative
• to the upper left corner of your window (GIMMEZEROZERO notwithstanding)
*/

SHORT MouseX, MouseY;

/* The time values are copies of the current system clock time. Micros
• are in units of microseconds, seconds are in seconds.

; */
ULONG Seconds, Micros;

/* The IDCMPWindow variable will always have the address of the window of
* this IDCMP

: - /
struct Window *IDCMPWindow;

struct
/* system-use variable */
IntuiMessage *SpecialLink;

/* — IDCMP Classes
#define SIZEVERIFY 0x00000001
#define NEWSIZE 0x00000002
#define REF1RESHWINDOW 0x00000004
#define MOtJSEBUTTONS 0x00000008
#define MOUSEMOVE 0x00000010
#define GADGETDOWN 0x00000020
#define GADGETUP 0x00000040
#define REQSET 0x00000080
#define MENUPICK 0x00000100
#define CLOSEWINDOW 0x00000200
#define RAWKEY 0x00000400
#define REQVERIFY 0x00000800
#define REQCLEAR 0x00001000
#define MENUVERIFY 0x00002000
#define NEWPREFS 0x00004000
#define DISKINSERTED 0x00008000
#define DISKREMOVED A 0X00010000
#define WBENCHMESSAGE 0x00020000

B-8

#define ACTJVEWINDOW 0x00040000
#define INACTIVEWINDOW 0x00080000
#define DELTAMOVE 0x00100000
#define VANILLAKEY 0x00200000
#define INTUITICKS 0x00400000
/* NOTEZ-B}EN:0x80000000 is reserved for internal use */

/* The IDCMP Flags do not use this special bit, which is cleared when
* Intuition ssnds its special message to the task, and set when Intuition
* gets its message back from the task. Therefore, I can check here to
* find out fast whether or not this message is available for me to send.
• /

#define LONELYMESSAGE 0x80000000

/* — IDCMP Codes */
/* This group of codes is for the MENUVERIFY function */
#define MENtJHOT 0x0001 /* IntuiWants verification or MENUCANCEL */
#define MENUCANCEL 0x0002 /* HOT Reply of this cancels Menu operation */
#define MENfJWAITING 0x0003 /* Intuition simply wants a ReplyMsgQ ASAP */

/* This group of codes is for the WBENCHMESSAGE messages */
#define WBENCHOPEN 0x0001
#define WBENCHCLOSE 0x0002 J

* ~ ™ •

/ * = = = = = : , - ,

/* IntuiText ijs a series of strings that start with a screen location
* (always relative to the upper left comer of something) and then the
* text of the string. The text is null-terminated.
* /

struct IntuiText

/* the pen numbers for the rendering */
/* the mode for rendering the text */
/* relative start location for the text */
/* relative start location for the text */
/* if NULL, you accept the default */
/* pointer to null-terminated text */
/* continuation to TxWrite another text */

*/
*/

UBYTE
UBYTE
SHORT
SHORT
struct
UBYTE
struct

FrontPen, BackPen;
DrawMode;
teftEdge;
iFopEdge;
iTextAttr *ITextFont;
*IText;
JntuiText *NextText;

B-9

/ • | • ' . i n , . , " . , — •

struct Menu

* /
: = = = *,

struct Menu *NextMenu;
SHORT LeftEdge, TopEdge;
SHORT Width, Height;
USHORT Flags;
BYTE *MenuName;
struct Menultem *FirstItem;

/* same level */
/* position of the select box */
/* dimensions of the select box */
/* see flag definitions below */
/* text for this Menu Header */
/* pointer to first in chain */

/* These mysteriously-named variables are for internal use only */
SHORT JazzX, JazzY, BeatX, BeatY;

} ; j
/* FLAGS SET BY BOTH THE APPLIPROG AND INTUITION */
#define MENUENABLED 0x0001 /* whether or not this menu is enabled */

/* FLAGS SET BY INTUITION.*/
#define MIDRAWN 0x0100 /* this menu's items are currently drawn */

/
/ * Menultem = = = /
/
struct Menultem
{

struct Menultem *NextItem;
SHORT LeftEdge, TopEdge;
SHORT Width, Height;
USHORT Flags;

LONG
APTR

MutualExclude;
ItemFill;

/* pointer to next in chained list */
/* position of the select box */
/* dimensions of the select box */
/* see the defines below */

/* set bits mean this item excludes that */
/* points to Image, IntuiText, or NULL */

APTR

BYTE

struct

^* When this item is pointed to by the cursor and the items highlight
I * mode HIGHIMAGE is selected, this alternate image will be displayed
*/

SelectFill; /* points to Image, IntuiText, or NULL */

Command; /* only if appliprog sets the COMMSEQ flag */

^tenultem *SubItem; /* if non-zero, this item has a subitem */

f* The NextSelect field represents the menu number of next selected
| * item (when user has drag-selected several items)

USHORT NextSelect;

B-10

/* FLAGS SET BY THE APPLIPROG */
#define CHECKIT 0x0001
#define ITEMTEXT 0x0002
#define COMMSEQ 0x0004
#define MENUTOGGLE 0x0008
#define ITEMENABLED 0x0010

/* whether to check this item if selected */
/* set if textual, clear if graphical item •/
/* set if there's an command sequence */
/* set to toggle the check of a menu item */
/* set if this item is enabled */

/* these are the SPECIAL HIGHLIGHT FLAG state meanings •/
#define HIGHFLAGS 0x0000
#define HIGHIMAGE 0x0000
#define HIGHCOMP 0x0040
#define HIGHBOX 0x0080
#define HIGHNONE 0x0000

/* see definitions below for these bits */
/* use the user's "select image" */
/* highlight by complementing the select box */
/* highlight by "boxing" the selectbox */
/• don't highlight */

/* FLAGS SET BY BOTH APPLIPROG AND INTUITION */
#define CHEpKED 0x0100 /* if CHECKIT, then set this when selected */

/* FLAGS SET BY INTUITION */
#define ISDRAWN 0x1000
#define HIGHITEM 0x2000
#define MENUTOGGLED 0x4000

/* this item's subs are currently drawn */
/* this item is currently highlighted */
/* this item was already toggled */

/ ! ~~

struct NewScreen

SHORT LeftEdge, TopEdge, Width, Height, Depth; /* screen dimensions */

* /
* /
* /

UBYTE DetailPen, BlockPen;

USHORT ViewModes;

USHORT Type;

struct frextAttr *Font;

UBYTE *DefaultTitIe;

struct Gadget ^Gadgets;

/* for bar/border/gadget rendering */

/* the modes for the ViewPort (and View) */

/* the screen type (see defines below) */

/* this screen's default text attributes */

/* the default title for this screen */

/* not used; should be NULL*/

/* If you are opening a CUSTOMSCREEN and already have a BitMap
* that you want used for your screen, you set the flags CUSTOMBITMAP in
* the Types variable and you set this variable to point to your BitMap
* structure. The structure will be copied into your screen structure,

* !

B-ll

I* after which you may discard your own BitMap if you want

struct BitMap *CustomBitMap;

/$, * /
/ ! /
/ ' ' X > C l V WW -111—LVJVV • I I • I • II • II . I l i a . IB I II I ! • • ! • • I Ml I II I I 11 . _ /

/ * _ = =

struct NewWinjdow

SHORT LeftEdge, TopEdge;

SHORT Width, Height;

UBYTE DetailPen, BlockPen;

ULONG IDCMPFlags;

ULONG Flags;

' /

/* screen dimensions of window */
/* screen dimensions of window */

/* for bar/border/gadget rendering */

/* user-selected IDCMP flags */

/* see Window struct for defines */ -

struct

UBYTE

struct

/4 You supply a linked-list of gadgets for your window.
4 This list DOES NOT include system gadgets. You get the standard
4 system window gadgets by setting flag-bits in the variable Flags (see
4 the bit definitions under the window structure definition)
/

struct GMget *FirstGadget;
I

/4 The CheckMark is a pointer to the imagery that will be used when
4 rendering Menultems of this window that want to be checkmarked
*j if this is equal to NULL, you'll get the default imagery

Injiage *CheckMark;

•Title; /* the title text for this window */

/* The Screen pointer is used only if you've defined a CUSTOMSCREEN and
•j want this window to open in it. If so, you pass the address of the
•j custom screen structure in this variable. Otherwise, this variable
*! is ignored and doesn't have to be initialized.

t
Sc|reen *Screen;

/*) SUPER_BITMAP window? If so, put the address of your BitMap structure
* in this variable. If not, this variable is ignored and doesn't have
•I to be initialized
/

struct BitMap *BitMap;

/*| The values d«scribe the minimum and maximum sizes of your windows.
*| These matter only if you've chosen the WINDOWSIZING gadget option,

B-12

SHORT

* which means that you want to let the user change the size of
* thjs window. You describe the minimum and maximum sizes that the
* wijndow can have by setting these variables. You can initialize
* any one of these to zero, which will mean that you want to duplicate
* thje setting for that dimension (if MinWidth == 0, MinWidth will be
* se^ to the opening width of the window).
* Y<jm can change these settings later using SetWindowLimits().
* If you haven't asked for a SIZING gadget, you don't have to
* initialize any of these variables.

*/1
MinWidth, MinHeight; /* minimums */SHORT Max^Vidth, MaxHeight; /* maximums */

/* TJie type variable describes the screen in which you want this window to
* oijen. The type value can either be CUSTOMSCREEN or one of the
* syjstem standard screen types such as WBENCHSCREEN. See the
* ty|pe definitions under the Screen structure
*/ i

USHORT Type;

I* ===== Preferences = T7====== :======—L^ :
/* I , .,

*/
* /

_________________________ ^ I

/* these are the definitions for the printer configurations */
#define FILENAME.SIZE 30 /* Filename size */

#define POINTEpSIZE (1 + 16 + 1) * 2 /* Size of Pointer data buffer */

/* These defines are for the default font size. These actually describe the
* height of the default fonts. The default font type is the topaz
* font, which is a fixed-width font that can be used in either
* eighty-column or sixty-column mode. The Preferences structure reflects
* which is currently selected by the value found in the variable FontSize,
* which may have either of the values defined below. These values actually
* are used to select the height of the default font. By changing the
* height, the resolution of the font changes as well.

*/ i
#define TOPAZ JIIGHTY 8
#define TOPAZ_£IXTY 9

struct Preferences!

/* the default font height */
BYTE FontHeight; /* height for system default font */

/* constant describing what's hooked up to the port */

B-13

UBYTE; PrinterPort; /* printer port connection */

/* the baud rate of the port */
USHORT BaudRate;

struct
struct
struct

/* various timing rates */
timeval KeyRptSpeed;
timeval KeyRptDelay;
timeval DoubleCIick;

/* baud rate for the serial port */

/* repeat speed for keyboard */
/* Delay before keys repeat */
/* Interval allowed between clicks */

/* Intuition Pointer data */
USHORT PointerMatrix[POINTERSIZE];
BYTE
BYTE
USHORT
USHORT
USHORT
USHORT

XOfiset;
YOffset;
colorl7;
colorl8;
colorl9;
PointerTicks;

/* Definition of pointer sprite */
/* X-Offset for active 'bit' */
/* Y-Offset for active 'bit' */

/* Colors for sprite pointer*/
/•••a*******************************/

/* Sensitivity of the pointer*/

/•a*********************************/

/* Standard default colors */
/* Used in the Workbench */

! /* Workbench screen colors */
USHORT eolorO;
USHORT colorl;
USHORT color2;
USHORT color3;

/* positioning data for the Intuition View */
BYTE ViewXOffset; /* Offset for top lefthand comer */
BYTE ViewYOffset; /* X and Y dimensions */
WORD ViewInitX, ViewInitY; /* View initial offset values */

BOOL i EnableCLI;

1 /* printer configurations */
USHORT1 PrinterType;
UBYTE ; PrinterFUename[FILENAME_SIZE];

/* CLI availability switch */

/* printer type */
/* file for printer •/

USHORT
USHORT
USHORT
UWORD
UWORD
USHORT
USHORT
USHORT
WORD

USHORT
UWORD
USHORT

/• print format and quality
PrintPitch;
PrintQuality;
PrintSpacing;
PrintLeftMargin;
PrintRightMargin;
Printlmage;
PrintAspect;
PrintShade;
PrintThreshold;

/* print paper descriptors *
PaperSize;
PaperLength; ,,
PaperType;

configurations */
/* print pitch */
/* print quality */
/* number of lines per inch */
/* left margin in characters */
/• right margin in characters */
/* positive or negative */
/* horizontal or vertical */
/* b&w, half-tone, or color */
/* darkness Ctrl for b/w dumps */

/
/* paper size */
/* paper length in number of lines */
/* continuous or single sheet */

B-14

BYTE padding[50]; /* For further system expansion */

/• PrinterPort */
#define PARALLEL_PRINTER 0x00
#define SERIALJPRINTER 0x01

/* BaudRate */
#define BAUD_liO
#define BAUD_300
#define BAUD_1200
#defme BAUD_2400
#define BAUD_4800
#define BAUD_96OO
#defineBAUD 19200
#define BAUD3GDI

/* PaperType */ i
#define FANFOIJD
#define SINGLE

/* PrintPitch */
#define PICA
#define ELITE
#define FINE

/* PrintQuality *ty
#define DRAFT !
#define LETTER

/* PrintSpacing *
#define SIX LPI
#define EIGHT!

/

PI

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07

0x00 „
0x80

0x000
0x400
0x800

0x000
0x100

0x000
0x200

i

/* Print Image *)\
#define IMAGEJ^OSITIVE 0x00
#define IMAGEJNEGATIVE 0x01

/* PrintAspect */
#define ASPECTJIORIZ 0x00
#define ASPECI^VERT 0x01

/* PrintShade */ l

#define SHADE_BW 0x00
#define SHADE.GREYSCALE 0x01
#define SHADE_COLOR 0x02

/* PaperSize */
#deHne USJLETTER 0x00
#define USJ.EGAL 0x10

B-15

#define NJTRACTOR 0x20
#define WJTRACTOR 0x30
#define CUSTOM 0x40

/* PrinterType */
#define CUSTOM_NAME 0x00
#define ALPHA_P_101 0x01
#define BROTHER_15XL 0x02
#define CBM_MPS1000 0x03
#define DIAB_630 0x04
#define DIAB_ADVJD25 0x05
#define DIAB_C_150 0x06
#define EPSON 0x07
#define EPSON_JX_80 0x08
#define OKMATEL20 0x09
#define QU|MEJ,P_20 OxQA
/* new printer entries, 3 October 1985 */
#define HPJLASERJET OxOB
#define HP_LASERJET_PLUS OxOC

/jj h _ _ * /

/ \ /

/jjj : . j j j /

/* This is the special data required by the proportional gadget
* typically, this data will be pointed to by the gadget variable Speciallnfo

struct Proplbfo

USHORT Flags; /* general-purpose flag bits (see defines below) */

/* You initialize the pot variables before the gadget is added to
* the system. Then you can look here for the current settings
* any time, even while user is playing with this gadget. To
* adjust these after the gadget is added to the system, use
* ModifyProp(); the pots are the actual proportional settings,
* where a value of zero means zero and a value of MAXPOT means
* that the gadget is set to its maximum setting.

\ */
USHORT HorizPot; /* 16-bit FixedPoint horizontal quantity percentage */
USHORT: VertPot; /* 16-bit FixedPoint vertical quantity percentage */

/* The 16-bit FixedPoint Body variables describe what percentage of
* the entire body of stuff referred to by this gadget is actually
* shown at one time. This is used with the AUTOKNOB routines,
* to adjust the size of the AUTOKNOB according to how much of
* the data can be seen. This is also used to decide how far
* to advance the pots when user hits the container of the gadget.
* For instancy, if you were controlling the display of a 5-line
* window of text with this gadget, and there was a total of 15

B-16

* lines that could be displayed, you would set the VertBody value to
* (MAXBODY / (TotalLines / DisplayLines)) = MAXBODY / 3.
|* Therefore, the AUTOKNOB would fill 1/3 of the container, and
* if user hits the container outside of the knob, the pot would
* advance 1/3 (plus or minus). If there's no body to show, or
* the total amount of displayable info is less than the display area,
* set the body variables to the MAX. To adjust these after the
* gadget is added to the system, use ModifyPropQ;

USHORT HorizBody;
USHORT VertBody;

/* horizontal Body */
/* vertical Body */

/* these are the variables that Intuition sets and maintains */
USHORT CWidth; /* container width (with any relativity absoluted) */
USHORT CHeight; /* container height (with any relativity absoluted) */
USHORT HPotRes, VPotRes; /* pot increments */
USHORT lieftBorder; /* container borders */
USHORT topBorder; /* container borders */

/* — FLAG BITS
#define AUTOKNOB 0x0001
#define FREEHORIZ 0x0002
#define FREEVERT 0x0004
#define PROI^BORDERLESS 0x0008
#define KNOBHIT 0x0100

#define KNOBHMIN 6
#define KNOBVMIN 4
#define MAXBODY OxFFFF
#defineMAXPOT OxFFFF

/* this flag says give me the auto-knob */
/* if set, the knob can move horizontally */
/* if set, the knob can move vertically */
/* if set, no border will be rendered •/
/* set when this knob is hit */

/* minimum horizontal size of the knob */
/* minimum vertical size of the knob */
/• maximum body value */
/* maximum pot value */

/ • • ^ ^ - ^ - ^ i ^ ^ ^ ^ J l l f t ^ i A C Z A A f c ^ C A ^^"^™^™^^^^™'^™"—' ^™i^^«W» II • 1.1 I • man i II I • II . n i • HI • M ^ - W ii I I n - « ^ ^ _ . _ ^ I

/* This structure is used for remembering what memory has been allocated to
* date by a given routine, so that a premature abort or systematic exit
* can deallocate memory cleanly, easily, and completely
*/

struct Remember

struct Remember *NextRemember;
ULONG RememberSize;
UBYTE *Memory;

B-17

/ ~~" "̂"~ —— ——- — — — —~
struct Requester

_ J j j /

f, I

/* The ClipRect and BitMap are used for rendering the requester */
struct Requester *OlderRequest;
SHORT LeftEdge, TopEdge; /* dimensions of the entire box */
SHORT Width, Height; /* dimensions of the entire box */
SHORT RelLeft, RelTop; /* for pointer relativity oflsets */

struct Gadget *ReqGadget;
struct Border *ReqBorder;
struct IntuiText *ReqText;
USHORT Flags;

/* pointer to a list of gadgets */
/* the box's border */
/* the box's text */
/* see definitions below */

I I* pen number for back-plane fill before draws */
UBYTE BackFill;

;/* Layer in place of clip rect */
struct Layer *ReqLayer;

UBYTE |ReqPadl[32];

j / * If the BitMap plane pointers are non-zero, this tells the system
| * that the image comes predrawn (if the appliprog wants to define
I * its own box, in any shape or size it wants!); this is OK by

* Intuition as long as there's a good correspondence between
* the image and the specified gadgets

V
struct pitMap *ImageBMap; /* points to the BitMap of PREDRAWN imagery */
struct Window *RWindow; /* added; points back to window */
UBYTE peqPad2[36];

/* FLAGS SET BY THE APPLIPROG */
#define POINTREL 0x0001 /* if POINTREL set,TopLeft is relative to pointer*/
#define PREDRAWN 0x0002 /* if ReqBMap points to predrawn requester imagery */
/* FLAGS SET BY BOTH THE APPLIPROG AND INTUITION •/

/* FLAGS SE? BY INTUITION •/
#define REQd>FFWINDOW 0x1000
#define REQACTIVE 0x2000
#define SYSREQUEST 0x4000
#define DEFERREFRESH 0x8000

/* part of one of the gadgets was off-window */
/* this requester is active */
/* this requester caused by system */
/* this requester stops a refresh broadcast */

B-18

/
£ _ _ ; _ _ _

/• ______ Screen = - = = = = = = = : = = - = - - =

struct Screen

_ _ */

:__===_=__=_=_== */

struct Screen *NextScreen; /* linked list of screens */
struct Window *FirstWindow; /* linked list of screen's windows */

SHORT LeftEdge, TopEdge;
SHORT Width, Height;

SHORT MouseY, MouseX;

USHORT Fjlags;

UBYTE *Title;
UBYTE *t>efaultTitle;

/* parameters of the screen */
/* parameters of the screen */

/• position relative to upper left */

/* see definitions below */

/* null-terminated title text */
/* for windows without ScreenTitle */

BYTE
BYTE

struct

struct
struct
struct
struct

/I* Bar sizes for this screen and all windows in this screen */
BjarHeight, BarVBorder, BarHBorder, MenuVBorder, MenuHBorder;
WBorTop, WBorLeft, WBorRight, WBorBottom;

TJextAttr *Font; /* this screen's default font */

/f the display data structures for this screen */
ViewPort ViewPort; /* describing the screen's display */

/* describing screen rendering */
/* auxiliary graphexcess baggage */
/* each screen gets a Layerlnfo */

I^astPort RastPort;
BitMap BitMap;
Layer_Info Layerlnfo;

struct Gjadget *FirstGadget;

UBYTE DetailPen, BlockPen;

/* only system gadgets are supported */

/* for bar/border/gadget rendering */

The following variable(s) are maintained by Intuition to support the
DisplayBeep() color-flashing technique.

USHORT S^veColorO;

struct

UBYTE *EpxtData;

UBYTE *UserData;

/* This layer is for the screen and menu bars */
Layer *BarLayer;

/* general-purpose pointer to user data extension */

/* — FLAGS SET BY INTUITION */
/* The SCREENTYPE bits are reserved for describing various screen types
* available under Intuition.

B-19

#define SCREENTYPE OxOOOF
/* — the definitions for the screen type —
#define WBENCHSCREEN 0x0001
#define CUSTOMSCREEN OxOOOF
#define SHOWTITLE 0x0010
#define BEEPING 0x0020
#define CUSTOMBITMAP 0x0040

/* all the screens types available */

/* Ta Da! The Workbench */
/* for that special look */
/* this gets set by a call to ShowTitle()*/
/* set when screen is beeping */
/* if you are supplying your own BitMap */

*/
* /

U — — — — = ^ — — — — ——————-—;—.——------.—. _ _ _ _

/
£ t̂rincTnfVi __

/* -=_=_=====__=______=___-___=_=__:__=_= • /

/* this is the special data required by the string gadget
* typically, this data will be pointed to by the gadget variable Speciallnfo
v

struct Stringing

I
UBYTE
UBYTE
SHORT
SHORT
SHORT

SHORT
SHORT
SHORT
SHORT
struct

LONG

If you initialize these variables, and then Intuition maintains them */
Buffer; / the buffer containing the start and final string */
•UndoBuffer; /* optional buffer for undoing current entry */
BufferPos; /* character position in buffer */
MaxChars; /* max number of chars in buffer (including NULL) */
DispPos; "•/* buffer position of first displayed character */

/4 Intuition initializes and maintains these variables for you */
/* character position in the undo buffer */
/* number of characters currently in buffer */
/* number of whole characters visible in container */
/* topleft offset of the container */
/* the RastPort containing this gadget */

UjidoPos;
NjumChars;
DjspCount;
Cteft, CTop;
Liyer *LayerPtr;

/*j You can initialize this variable before the gadget is submitted to
*j Intuition, and then examine it later to discover what integer
*j the user has entered (if the user never plays with the gadget,
*| the value will be unchanged from your initial setting)
f

Lo|nglnt;

/*! If you want this gadget to use your own console keymapping, you
*| set the ALTKEYMAP bit in the Activation flags of the gadget, and then
*| set this variable to point to your keymap. If you don't set the
*! ALTKEYMAP, you'll get the standard ASCII keymapping.

struct KeyMap *AltKeyMap;

B-20

/^ __ __________________ ______ */

/* Z_I_I_=_-L|_LZZZZZZZZZZZZZZZ_IZZ__iZ__.ZZZZ=_IZ=ZZ= */
struct Window
f I

struct Window *NextWindow; /* for the linked list in a screen */

SHORT LeftEdge, TopEdge;
SHORT Width, Height;

SHORT MouseY, MouseX;

UBYTE

struct

struct

struct
struct

BYTE
struct

/* screen dimensions of window */
/* screen dimensions of window */

/* relative to upper left of window */

SHORT MinAVidth, MinHeight; /* minimum sizes */
SHORT MaxWidth, MaxHeight; /* maximum sizes */

ULONG

struct Menu *MenuStrip;

*Tible;

/* see below for defines */

/* the strip of menu headers */

/* the title text for this window */

Requester *FirstRequest; /* all active requesters */

Requester *DMRequest; /* double-click requester */

;
SHORT ReqCount;

Screen *WScreen;
RasftPort *RPort;

/* count of reqs blocking window */

/* this window's screen */
/* this window's very own RastPort */

/* The border variables describe the window border. If you specify
* <frIMMEZEROZERO when you open the window, then the upper-left of the
* ClipRect for this window will be upper-left of the BitMap (with correct
* Offsets when in SuperBitMap mode; you MUST select GIMMEZEROZERO when
* ijising SuperBitMap). If you don't specify ZeroZero, then you save
* î iemory (no allocation of RastPort, Layer, ClipRect and associated
* bitmaps), but you also must offset all your writes by BorderTop,
* BorderLeft and do your own mini-clipping to prevent writing over the
* system gadgets
*/

BorderLeft, BorderTop, BorderRight, BorderBottom;
RastPort *BorderRPort;

fou supply a linked list of gadgets for your window.
* This list DOES NOT include system gadgets. You get the standard
* window system gadgets by setting flag-bits in the variable Flags (see
* the bit definitions below)

struct Gadget *FirstGadget;

B-21

struct
/* these arc for opening/closing the windows */
Window *Parent, *Descendant;

/* Sprite data information for your own pointer;
* set these AFTER you open the window by calling SetPointerQ
*/

USHORT *Pointer; /* sprite data */
BYTE PtrHeight; /* sprite height (not including sprite padding) */
BYTE PtrWidth; /* sprite width (must be less than or equal to 16) */
BYTE XOffset, YOffset; /• sprite offsets */

| /* The IDCMP Flags and user's and Intuition's message ports •/
ULONG ; IDCMPFlags; /* user-selected flags */
struct MsgPort *UserPort, *WindowPort;
struct IntuiMessage *MessageKey;

UBYTE DetailPen, BlockPen; /* for bar/border/gadget rendering •/
j
| /* The CheckMark is a pointer to the imagery that will be used when

* rendering Menultems of this window that want to be checkmarked
* if this is equal to NULL, you'll get the default imagery

SHORT
SHORT

SHORT

struct Image * CheckMark;

UBYTE *ScreenTitIe; /* if non-null, screen title when window is active*/

/* These variables have the mouse coordinates relative to the
* inner window of GIMMEZEROZERO windows. This is compared with the
* MouseX and MouseY variables, which contain the mouse coordinates
* relative to the upper left corner of the window, GIMMEZEROZERO
* notwithstanding
*/

GZZMouseX;
GZZMouseY;
/* These variables contain the width and height of the inner window of

* GIMMEZEROZERO windows.
*/

GZZWidth;
SHORT GZZHeight;

UBYTE *ExtData;
BYTE *UserData; /* general-purpose pointer to user data extension */

\f* This pointer keeps a duplicate of what
I * Window .RPort->Layer is ..supposed to be pointing at.
* /

struct Jjayer *WLayer;

B-22

/* — FLAGS REQUESTED (NOT DIRECTLY SET THOUGH) BY THE APPLIPROG _— */
#define WINDOWSIZING 0x0001
#define WINDQWDRAG 0x0002
#define WINDOWDEPTH 0x0004
#define WINDOWCLOSE 0x0008

#define SIZEBRIGHT 0x0010
#define SIZEBBOTTOM 0x0020

/* include sizing system-gadget? */
/* include dragging system-gadget? */
/* include depth arrangement gadget? */
/* include close-box system-gadget? */

/* size gadget uses right border */
/* size gadget uses bottom border */

/* — refresh modes
/* combinationg of the REFRESHBITS select the refresh type */
#define REFRESHBITS
#define SMARtJREFRESH
#define SIMPLBLREFRESH
#define SUPER^BITMAP
#define OTHER_REFRESH

#define BACKDROP

#define REPORTMOUSE

#define GMMEfZEROZERO

#define BORDERLESS

#define ACTIVATE

OxOOCO
0x0000
0x0040
0x0080
OxOOCO

0x0100

0x0200

0x0400

0x0800

0x1000

/* FLAGS SET BY INTUITION */
#deiine WEMDOWACTIVE 0x2000
#define INREQUEST 0x4000
#define MENU$TATE 0x8000

/* this is an ever-popular Backdrop window */

/* set this to hear about every mouse move */

/* make extra border stuff */

/* set this to get a window sans border */

/* when window opens, it's the active one */

/* this window is the active one */
/* this window is in request mode */
/* this window is active with its menus on */

/* — Other uset
#define RMBTRAP 0x00010000
#define NOCA^EREFRESH 0x00020000

/* — Other Intuition Flags
#define WINDOWREFRESH 0x01000000
#deHne WBENCHWINDOW 0x02000000
#define WINDOWTICKED 0x04000000

/
/* Catch RMB events for your own */
/* not to be bothered with REFRESH */

/* window is currently refreshing */
/* WorkBench tool ONLY window */
/* only one timer tick at a time */

#define SUPERjJJNUSED OxFCFCOOOO /* bits of Flag unused yet */

/* — see struct IntuiMessage for the IDCMP Flag definitions */

B-23

/* ===== Miscellaneous = = = = = = = = = = =
*/
* /

/* ===== MACROS =
#define MENUNUM(n)
#define ITEMNUM(n)
#define SUBNUM(n)

#define SHIFTMENU(n)
#define SHIFTITEM(n)
#define SHIFTSUB(n)

(n & OxlF)
((n >> 5)&OxOO3F)
((n >> 11) & OxOOlF)

(n & OxlF)
((n&0x3F) << 5)
((n&OxlF) << 11)

/• ===== MENU STUFF = = = = = = = = =
#define NOMENU OxOOlF
#define NOITEM 0x003F
#define NOSUB OxOOlF
#define MENUNULL OxFFFF

/• ===== ==RJ='s peculiarities = = = = = = = = = = = = = = = = = = = ;
#define FOREVER for(;;)
#define SIGN(x)(((x) > 0) - ((x) < 0))
#define NOT! !

/* These defines are for the COMMSEQ and CHECKIT menu stufif. If CHECKIT,
* I'll use a generic width (for all resolutions) for the CheckMark.
* If COMM9EQ, likewise I'll use this generic stuff
*/

19
27
13
16

#define CHECKWIDTH
#define COMMWIDTH
#define LOWCHECKWIDTH
#define LOWCOMMWIDTH

/* These are ihe AlertNumber defines, if you are calling Display Alert()
* the AlertNumber you supply must have the ALERT__TYPE bits set to one
* of these patterns
/

#define ALERTJTYPE 0x80000000
#define RECOVERY_ALERT 0x00000000
#define DEADEND_ALERT 0x80000000

/* the system can recover from this */
/* no recovery possible, this is it */

/* When you're defining IntuiText for the positive and negative gadgets
* created by a call to AutoRequestQ, these defines will get you
* reasonable-looking text. The only field without a define is the IText
* field; you decide what text goes with the gadget
*/

#define AUTOFRONTPEN -» 0
#define AUTOBACKPEN 1

B-24

#define AUTODRAWMODE JAM2
#define AUTOLEFTEDGE 6
#define AUTOTOPEDGE 3
#define AUTOITEXTFONT NULL
#define AUTONEXTTEXT NULL

/* — RAWMOUSE Codes
#define SELECTUP
#define SELECTDOWN
^define MENUUP
#define MENUDOWN
#defme ALTLEFT
#defme ALTRIGHT
#define AMIGALEFT
#define AMIGARIGHT
#define AMGAKEYS

#define CURSORUP
#define CURSORLEFT
#define CURSORRIGHT
#define CURSORDOWN
#define KEYCODE.Q
#define KEYCODE.X
#define KEYCODE N
#define KEYOODE.M

#endif

and Qualifiers (Console OR IDCMP)
(IECODEJLBUTTON | IECODE.UP^PREFIX)
(lECODE.LBUTTON)
(IECODE.RBUTTON | IECODE_UP_PREFDC)
(IECODE.RBUTTON)
(IEQUALIFIER_LALT)
(IEQUALIFIER_RALT)
(IEQUALIFIER.LCOMMAND)
(IEQUALIFIER RCOMMAND)
(AMIGALEFT | AMIGARIGHT)

0x4C
0x4F ~
0x4E
0x4D
0x10
0x32
0x36
0x37

B-25

USA

Ami Mt^eferericeSenes

I Inference Manual

The Anfdga Computer is an exciting new high-performance microcomputer with
superb (graphics, sound, and multitasking capabilities. Its technologically advanced
hardware, designed around the Motorola 68000 microprocessor, includes three
sophisticated custom chips that control graphics, audio, and peripherals. The ^
Amiga Is unique system software is contained in 192K of read-only memory (ROM),
providing programmers with unparalleled power, flexibility, and convenience in
designing and creating programs.

The AMIGA INTUITION REFERENCE MANUAL, written by the technical staff at
Commodore-Amiga, Inc., is a complete description of Intuition, the Amiga user
interface. It includes:

• a general introduction to Intuition's features
• a complete listing of the components of Intuition, including specifications for the

datja structure of each component and a brief summary of the function calls that
aff(ct that component v

• important programming style guidelines * *
• a g] ossary of key terms

For the serious programmer working in assembly language, C, or Pascal who wants -
to create application programs that take advantage of the Amiga's impressive capabil-
ities an|d are consistent and easy to use, the AMIGA INTUITION REFERENCE
MANIfAL is an essential reference. " •

Written by the technical staff at Commodore-Amiga, Inc., who designed the Amiga,
the AMIGA INTUITION REFERENCE MANUAL is the definitive source oj informa-
tion on the user interface built into this revolutionary microcomputer.

The other books in the Amiga Technical Reference Series are:

Amiga hardware Reference Manual " :z
Amiga &OM Kernel Reference Manual: Libraries ami Devices
Amiga AOM Kernel Reference Manual: Exec

Cwcr design In/ Marshall llcnrichs
Cover photograph In/ lack Hacgcr

Addis(j>n-Wesley Publishing Company, Inc. ISBN 0-501-110713-3

